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ELECTROSTATIC POTENTIAL

FROM DISTRIBUTED CHARGES

by

J.Kovacs and P. Signell
Michigan State University

1. Introduction

The electric potential at a point in space is defined as the potential
energy per unit charge of a test charge placed at that point. Alterna-
tively potential may be defined as the work per unit charge that must
be done by an external agent to bring a charged particle from infinity
to that point. From these definitions, the potential associated with any
electric field may be determined. Starting from the expressions for the
electric potential due to a point charge and due to a collection of point
charges, a general procedure can be developed whereby the potential due
to a continuous distribution of charge can be obtained if the spatial dis-
tribution of the charge is known. We can use this general procedure to
obtain the potential due to, for example, a continuous line of charge, a
uniform circular distribution of charge, or a uniform sheet of charge. The
potential from spherical distributions of charge can also be obtained by
such methods but will not be treated here.

2. Discrete Charges

2a. A Single Discrete Charge. The electrostatic potential at a point
P in space, due to a charge Q1 on a point particle that is a distance r1P
from P , is given by:

V (P ) = ke
Q1
r1P

(1)

The zero point, the point where the potential due to this charge Q1 is zero,
has been taken to be at an infinite distance from Q1, i.e., at r1P = ∞.
This is a good choice for the zero point since we generally expect quantities
to die away as we get far from their sources.1 The value of this potential
will naturally be negative if Q1 is negative and positive if Q1 is positive.
Because this is the potential due to a point-particle charge, it belongs to
the class of potentials called “Coulomb Potentials”.

1See “Potential Due To Discrete Charges” (MISN-0-116).
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2b. A Set of Discrete Charges. Consider the effect on the value of
the potential at P , due to a single nearby charge Q1, if a second point
charge Q2 is placed somewhere in the vicinity of P , a distance r2P from
P . Its contribution is given by an expression similar to Eq. (1), except
that the charge is Q2 and its distance from point P is r2P . However, if Q1
remains where it was, the presence of Q2 does not alter the contribution
of Q1 to the potential at P . Each charge contributes independently to
the potential at P and the electric potential there is simply the sum of
the two contributions.2 so the net potential at P due to the two charges
is

V (P ) = V1(P ) + V2(P ) = ke

(

Q1
r1P

+
Q2
r2P

)

(2)

This expression can be generalized to a collection of charges, each of which
contributes to the potential at the point P , depending upon its charge Qi

and its distance riP from P . If there are N discrete charges contributing
to the potential at P , then

V (P ) = ke

N
∑

i=1

Qi

riP
, (3)

where the index i, running from 1 to N , serves to label the charges [just
as the subscripts 1 and 2 do in Eq. (2)].

3. Linear Distributions

3a. Discrete Charges on a Circle. As an illustration, consider 400
particles, each having charge q, arranged randomly around the circumfer-
ence of a circle of radius R. What electrostatic potential do these charges
create at the center of the circle? Note that: (1) each charge is the same
distance R from the point at the center of the circle, independent of where
the charge is on the circle; and (2) all particles have the same charge q.
This means that each particle produces an identical contribution to the
potential at the center of the circle.3 The contribution of the charge on

2The potentials from the individual charges are said to “add as scalars.” However,
the electric field contributions at the point P due to several charges are said to “add
as vectors,” meaning that the electric field is the vector sum of the fields that each of
the charges would produce at P if it alone was present.

3Note that the electric field at the center of the circle does depend on the arrange-
ment of the charges. This is because electric field contributions add as vectors, in
contrast to the potential contributions which add as scalars.
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the nth particle can be written:

Vn(0) = ke
q

R
, (4)

Then the total potential at the center of the ring is just the number of
charges times the potential from any one of the charges:

V (0) = 400 ke
q

R
, (5)

and this is just the same potential as would be produced by a single
particle having charge Q = 400 q located a distance R away from the
center of the circle in any direction:

V (0) = ke
Q

R
. (6)

Thus for the special case of a circular arrangement of equal charges, we
can easily calculate the potential at the center of the circle. On the
other hand, if there are N particles on the circle but they are not equally
charged, then:

V (0) =

N
∑

n=1

ke
qn

R
=
ke

R

N
∑

n=1

qn = ke
Q

R
, (7)

where Q is the total charge on the circle. Note the similarity to the
Coulomb potential, Eq. (1).

3b. Continuous Charges on a Circle. The case of discrete charges
distributed around a circle can be extended to the situation where there
are so many charges, closely packed on the circle, that we can more easily
describe the charge in terms of a “linear charge density,” the amount
of charge per unit length along the line that is the circumference of the
circle (this linear charge density is often given in coulombs/meter). In
general, the charge density will vary from point to point around the circle.
Each point on the circle will be labeled by its distance around the circle
from some specified starting point such as, say, the right-most point on
the circle. Thus, for example, we might say that a particular point is
` = 2.3 cm counterclockwise around the circle from the circle’s right-most
point, and that the linear charge density there 1.4×10−5 coulombs/meter.
If the charge density is the same at all points around the circle we say
that the charge is “uniformly distributed” along that circular line.
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3c. Linear Charge Density at a Point. To define the linear charge
density at any one point mathematically, we start with a small region
around that point. We will call the point in question `P , where ` is
distance measured along the line from some designated starting point.
We focus our attention on a small segment of the line that includes the
point `P . We denote the length of the segment of line by the symbols ∆`.
We denote the actual amount of charge in that segment by the symbols
∆Q. We now define the linear charge density λ at the point P as the
limit of the ratio of ∆Q to ∆` as we shrink ∆` to zero around the point
P .4 This is just the definition of the derivative of the charge with respect
to distance along the line at the point P :

λ(`P ) = lim
∆`→0

∆Q

∆`
=
dQ

d`
. (8)

To find the amount of charge in some finite-length region R, we integrate
over that region:

QR =

∫

R

dQ =

∫

R

(

dQ

d`

)

d` =

∫

R

λ d` . (9)

If the charge is uniformly distributed over a length L along a line of charge,
the total charge on the line, QL, is just the (uniform) charge density, λ,
times the line-length, L:5

Q = λL (uniform λ) . (10)

¤ Show that a circle of radius 5.0 cm having a uniformly-distributed total
charge 2.0× 10−6 C has a charge density of 6.4× 10−6 C/m. If charge is
distributed non-uniformly around a circle, the value of the linear charge
density λ varies from point to point around the circle. If distance around
the circle from some designated starting point is called `, then we can
indicate the variation of λ by writing it as a function of position, λ(`).

4The idea of a “limit” begins with the numerical value for the ratio for a particular
segment of line around P . If the length of the segment is small enough, then making
the even smaller will make an insignificant difference in the ratio. For example, cutting
the length in half might make a difference in the seventh significant digit of the ratio.
Cutting it in half again might provide a further change in only the eighth significant
digit of the ratio. As the length shrinks toward zero the changes in the ratio shrink
toward zero, resulting in a definite single value for the ratio at the point.

5Notice in Eq. (3) that a constant λ can be taken outside the integration sign and
the integration then just produces the total length, L.
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dQ = dl l

0

Figure 1. An infinitesimal
amount of charge dQ is related
to the infinitesimal length d` in
which it occurs through the linear
charge density λ.

3d. Uniform Distribution on a Circle. If the charge is uniformly
distributed around a circle, the linear charge density around the circle is:

λ =
Q

2πR
; (uniform distribution). (11)

The resulting potential at the center of the circle, in terms of r and λ, is
as in Eq. (6):

V (0) = ke2πλ ; (uniform distribution). (12)

¤ Note that the answer is independent of the radius of the circle. Why?

3e. Non-Uniform Distribution on a Circle. To compute the po-
tential at the center of a circle of non-uniformly distributed charges, we
first rewrite Eq. (8) to show the infinitesimal (see Help: [S-5]) amount
of potential, dV , produced at some space-point, ~r, due an infimitesimal
amount of charge dQ at space-point ~r ′ (see Fig. 1):

dQ = λd` .

dV = ke
dQ

|~r′ − ~r|

V (~r) =

∫

ke
dQ

|~r′ − ~r| =
ke

|~r′ − ~r|

∫

λd`

V (~r) =
ke

|~r′ − ~r|Q

which has the same form as the Coulomb potential in Eq. (1) (although
the electric filed will not be the same as in the Coulomb case).
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4. Surface Distributions

4a. Surface Charge Density. Suppose we wish to determine the
electrostatic potential at some point near a surface which has charged
particles distributed over it in such a fashion that the charge distribution
can be considered to be continuous.6 Then we can define the density
of charges on the surface much as we define mass density in working
with material objects. A typical unit of measure for charge density is
“coulombs per square meter.” To define the surface-charge density at any
point mathematically, we must consider a small region around the point.
We will call the point in question P and the small region’s area ∆A. The
size and shape of the region will soon be seen to be unimportant since we
will mathematically change it. We represent the charge in the region by
∆Q. We now define the surface charge density σ as the limit of the ratio
of region’s charge to area as the region shrinks toward zero area around
the point P . This is just the definition of the derivative of the charge
with respect to area at the point P :7

σ(P ) = lim
∆A→0

∆Q

∆A
=
dQ

dA
.

To find the amount of charge in some region R, we integrate over that
region:

Q =

∫

R

dQ =

∫

R

(

dQ

dA

)

dA =

∫

R

σ dA . (13)

If charge is said to be uniformly distributed over some surface, it means
that σ is the same at all points on the surface and the total charge on the
surface is then just the (uniform) charge density times the area:8

Q = σ A (uniform σ) . (14)

6This means that the particles are so close together that they appear to be con-
tinuous, much as your skin appears to be continuous even though it is made up of
individual atoms. Mathematically, we treat charges as continuous when doing so will
introduce an error so small that it will have no significant effect on answers.

7The idea of a “limit” begins with the numerical value for the ratio for a particular
area around P . If the area is small enough, making the area even smaller will make
an insignificant difference in the ratio. For example, halving the area might make a
difference in the seventh significant digit in the ratio. Halving it again might provide
a further change in only the eighth significant digit in the ratio. As the area shrinks
from this region toward zero the changes in the ratio shrink toward zero, resulting in
a definite single value.

8Notice in Eq. (3) that a constant σ can be taken outside the integration sign and
the integration then just produces the total area, A.

10



MISN-0-147 7

r
R2

R1

0

s

Figure 2. A hollow disk has
charge density σ for R1 < r < R2.

¤ Show that a (circular) disk of radius 5.0 cm having a uniformly-
distributed total charge 2.0 × 10−6 C has a charge density of 2.5 ×
10−4 C/m2.

4b. Continuous Charge on a Disk. Suppose we have a hollow disk,
a flat ring, as in Fig. 2, with uniform charge density σ, and we want to
calculate the potential at the center of the ring. Using the usual technique
for such cases, we first calculate the infinitesimal potential dV due to a
sub-ring of width dr at radius r as in Fig. 3. ( Help: [S-5] ) and then
integrate over the area defined by R1 < r < R2:

V =

∫ r=R2

r=R1

dV . (15)

dr

r

0

Figure 3. A circular ring with
infinitesimal width dr has an in-
finitesimal area dA = 2πrdr. This
is the same disk as in Figref1.
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To get the potential dV at the center due to a ring of charge having radial
width dr, we need the charge dQ in that ring and the distance of the ring
from the center. The charge is the area times the density, 2πr dr times σ,
so we get:

dV = ke
dQ

r
= ke

σ 2πr dr

r
, (16)

¤ If you do not see how Eq. (16) is arrived at, be sure to go through
the assistance provided in this module’s Special Assistance Supplement.
Help: [S-5]

Putting Eq. (16) into Eq. (15) gives us the potential:

V (0) =

∫ R2

R1

ke
σ 2πr dr

r
= keσ 2π

∫ R2

R1

dr = keσ 2π(R2 −R1) .

The total charge Q on the ring is just the density times the area:

Q = σ (πR22 − πR21) ,

so the answer in terms of the total charge is:

V (0) =
2keQ

R2 +R1
=
keQ

Rav
, (17)

where Rav is the simple average of the two radii. Note the similarity to a
Coulomb potential. In fact, if the width of the ring is very small compared
to R1, all distances from charge to the center of the ring will be very close
to the single value Rave. Calling that single value R, Eq. (17) becomes
the circular line answer of Eq. (7). Put into words, a ring whose width is
very small compared to any of its radii will “look” from the center point
as if it is very close to being a circular line of charge and so the potential
at the center will be very close to the answer for a circular line of charge.

5. Continuous Distributions In General

5a. General Approach. In general, we say that an infinitesimal part
of the charge distribution, dQ, produces an infinitesimal Coulomb-like
contribution9 dV (~r) to the total potential at a point ~r:

dV (~r) = ke
dQ(~r′)
|~r′ − ~r| , (18)

9It is Coulomb-like because the charge region is so small that it resembles a point
particle; more on this later.

12
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where |~r′ − ~r| is the distance from the infinitesimal piece of charge at
point ~r′ to the point ~r at which we wish to know the potential. Then the
equation for the potential itself is obtained by integrating both sides of
Eq. (18):

V (~r) = ke

∫

dQ(r′)
|~r′ − ~r| . (19)

The integral is easily performed for certain geometrical configurations of
charge, but for other configurations computer integration must be used.

5b. Some Specific Geometries. We interpret the quantity dQ(~r)
on the right side of Eq. (19) as the charge in some infinitesimally small
region of space. Then we use an appropriate density function to convert
the integral from one over charge to one over space. The three generally-
used density functions are:

λ =
dQ

d`
; σ =

dQ

dA
; ρ =

dQ

dV .

where:

λ(`) ≡ “linear charge density”

≡ “charge per unit length along a one-dimensional line,”

σ(~r) ≡ “surface charge density”

≡ “charge per unit area on a two-dimensional surface,”

ρ(~r) ≡ “volume charge density”

≡ “charge per unit volume in three-dimensional space.”

Note that λ has a value at each point along a line of charge, with any spe-
cific point being designated by some one-dimensional position descriptor.
Similarly, σ has a value at each point on a surface of charge, with any
specific point being designated by some two-dimensional position descrip-
tor. Finally, ρ has a value at each point throughout a three-dimensional
distribution of charge, with any specific point being designated by some
three-dimensional position descriptor.

5c. Spatial Representations of the Charge Elements. In order to
integrate over space in any particular problem, one must first use the ap-
propriate density function to convert from infinitesimal elements of charge
to infinitesimal elements of space. The exact method of doing this depends
on the spatial symmetries of the problem, if any exist, in order to ease
the integration process.

13
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For a linear charge distribution we may write:

dQ = λ(`) d` ,

and then we can integrate along the line of charge from one end to the
other. Any line of charge is really three-dimensional but we can treat it
as one-dimensional if the cross-sectional area is small compared to the
distances from all parts of the charged line to the point where we wish to
calculate the potential (so it is far enough away so it “looks” like a line
of charge).

For surface charge distributions we write:

dQ = σ(x, y) dx dy ,

or:
dQ = σ(r, θ) r dr dθ ,

depending on whether the charge density is described in Cartesian or
circular coordinates. In other words, the infinitesimal element of area is
dA = dxdy in Cartesian coordinates, etc. Any surface of charge is really
three-dimensional but we can treat it as two-dimensional if its thickness is
small compared to the distances from all parts of the charge to the point
where we wish to calculate the potential (so it is far enough away so it
“looks” like a surface of charge).

For volume charge distributions we write:

dQ = ρ(x, y, z) dx dy dz ,

or:
dQ = ρ(r, θ, φ) r2 sin θ dθ dφ dr ,

or:
dQ = ρ(r, φ, z) r dr dφ dz ,

depending on whether the charge density is described in Cartesian, spheri-
cal or cylindrical coordinates (other coordinate systems may also be used).
In other words, the infinitesimal element of volume is dV = dxdydz in
Cartesian coordinates, etc.
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Glossary

• continuous charge distribution: an arrangement of many discrete
charges so closely spaced that the charge is treated as a continuum,
resulting in a replacement of discrete sums with integrals. Such charge
distributions occur over one dimension (lines), two dimensions (sur-
faces) or three dimensions (volumes).

• linear charge density: on a linear charge distribution, the ratio of an
infinitesimal portion of charge to the infinitesimal element of length it
is contained in. This ratio varies over the length of charge distribution
unless the charge is uniformly distributed. For a uniform distribution,
the linear charge density, λ, is just the total charge divided by the total
length of the distribution.

• surface charge density: within a surface charge distribution, the
ratio of an infinitesimal portion of charge to the infinitesimal element
of surface area it is contained in. This ratio varies over the surface of
the charge distribution unless the charge is uniformly distributed. For
a uniform distribution, the surface charge density, σ, is just the total
charge divided by the total area of the distribution.

• uniform charge distribution: any distribution of charge that is
independent of position within the distributed charge.

• volume charge density: within a volume charge distribution, the
ratio of an infinitesimal portion of charge to the infinitesimal element of
volume it is contained. This ratio varies over the volume of the charge
distribution unless the charge is uniformly distributed. For a uniform
distribution, the volume charge density, ρ, at any point is just the total
charge divided by the total volume of the charge distribution.

Treating the charges as though they are continuous rather than dis-
crete will introduce an error so small it will be unobservable in almost
any application, and it will allow us to easily solve problems that could
otherwise be attempted only with horrendous amounts of effort and com-
puter time. When charges are distributed along a line, we can designate
points along the line by the distance ` measured along the line from some
designated zero point, a point where ` = 0, so the amount of charge per
unit length along the line, at any point `, can be written as λ(`). We
generally say that we can represent the

15
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PROBLEM SUPPLEMENT

Note: Problem 5 also occurs in this module’s Model Exam.

1.

x

y

B

CA
origin

a. Determine the potential at the origin of coordinates due to the
semicircular line of charge shown in the above figure. The center
of the arc is at the origin, its radius is 0.04m. A total charge of
1.0× 10−6 C is distributed uniformly along this semicircular line.

b. Suppose this 10−6 C is distributed differently, with 7.5 × 10−7 C
distributed uniformly along the quarter circular arc AB and 2.5 ×
10−7 C distributed uniformly along the quarter circular arc BC.
Now what is the potential at the origin?

2. Consider a point P which is on the line through the center of a circle of
radius R and perpendicular to the plane of that circle. P is located at
a distance x from the center of the circle. If a charge per unit length
λ is distributed uniformly on the circumference of that circle, what
is the electrostatic potential at P? Check that the result obtained is
consistent with the results of Eq. (1) by letting x go to zero so that
point P is at the center of the circle.

3. Consider a circular distribution of charge similar to the circular
line of charge in Problem2, except that the charge is distributed
on a flat circular ring of infinitesimal thickness, whose inside radius
is R and outside radius is R + dR as shown in the sketch below.

16
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dr

r

0

a. If charge is uniformly distributed on the shaded portion of the above
ring with a surface density σ what is the total charge on the ring?

b. Consider a line perpendicular to the plane of the ring and passing
through its center O. At a point P on this line, a distance x above
the plane of the ring, determine the electrostatic potential due to
the charge on the ring.

4. a. Suppose charge is distributed uniformly on a circular disk of radius
R. Treating this disk as divided into rings, calculate the potential
at a point P on a line passing through the center of the disk. The
line is perpendicular to the plane of the disk and the point P is a
distance x along the line from the center of the disk. You can make
use of the result of Problem 3b. Express your answer in terms of
the total charge Q on the disk. Help: [S-2]

b. (only for those interested) For the case xÀ R, the point P is so far
from the disk that as far as the potential at point P is concerned,
the disk looks like a point charge. In that case the answer to part (a)
should reduce to the potential due to a point charge at a distance x
from the charge. Assume xÀ R and expand the (R2+x2)1/2 term
using a Taylor series expansion,10 and show that you do indeed get
the potential from a point charge. Help: [S-1]

10See “Taylor’s Polynomial Approximation For Functions,” (MISN-0-4).
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5.

dx

point Px = 0

x = a x = xp

x

x

A uniformly distributed line of charge is placed along the x-axis from
x = 0 to x = a. The total charge on the line is Q.

a. Write down the expression for the potential, at a point P on the x-
axis a distance xP from the origin, due to an infinitesimal segment
of charge contained in an infinitesimal segment of length dx at a
distance x from the origin (see the sketch).

b. Summing up the contributions from all of the elements of charge,
find the expression for the potential at P due to this line of charge.
Assume xP > a.

c. (only for those interested) For the case (xP À a), show that
V (xP ) ≈ ke Q/xP , meaning that when the charged line is far enough
away so its size appears to be negligible, it looks like a point charge.
Help: [S-8]

Brief Answers:

1. a. 2.25× 105V

b. 2.25× 105V

2. V (P ) = ke2π
λR

(R2 + x2)
1/2

3. a. dQ = 2πσRdR Help: [S-3]

b. dV (P ) = ke2π
σRdR

(R2 + x2)
1/2

4. a. V (x) = ke2
Q

R2

[

(

R2 + x2
)1/2 − x

]

b. V (x) = ke2
Q

R2

[

(

R2 + x2
)1/2 − x−R

]
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5. a. dV (xP ) = ke
Qdx

a(xP − x)

b. V (xP ) = ke
Q

a
`n

(

xP

xP − a

)

Help: [S-4]
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS, Problem 4b)

With x À R, the ratio R/x obeys the relation: R/x ¿ 1. When that
is true, it is even truer that: (R/x)2 ¿ 1. Then we can rewrite the
expression for the potential in terms of the small quantity ε ≡ R/x
and use a particular small-quantity approximation (here written as a
function of some variable y):a

(1 + y)1/2 ≈ 1 +
y

2
. (y ¿ 1)

Here is the potential, V (x), rewritten in terms of ε:

V (ε) = ke
2Q

R2

[

(

R2 +
R2

ε2

)1/2

− R

ε

]

,

and here it is again, with R/ε factored out:

V (ε) = ke
2Q

εR
[(1 + ε2)1/2 − 1] ,

and here it is after the small-ε2 approximation has been applied:

V (ε) ≈ ke
2Q

εR

[

ε2

2

]

. (ε¿ 1)

Finally, here it is converted back to a function of x:

V (x) ≈ ke
Q

x
, (xÀ R)

which is truly Coulombic.

aSee “Taylor’s Polynomial Approximation For Functions,” (MISN-0-4).
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S-2 (from PS, Problem 4a)

You are going to have to integrate on R to sum the contributions of the
various rings. However, the symbol R has already been defined in this
problem as the radius of the disc so it cannot also be used as the symbol
for the (variable) radius of the ring. We switch the ring radius to the
symbol R′ and that is what becomes the variable of integration as we
sum on the various rings that make up the disc. You can look up the
value of the integral in a Table of Integrals, or you can do it by hand
this way: substitute y2 ≡ (R′2 + x2) so the denominator is y and the
numerator is y dy, with the limits of integration being x and

√
R2 + x2.

S-3 (from PS, Problem 3a)

The notation “dR” and “dQ” indicates that these are “infinitesimal
quantities,” quantities that will be made vanishingly small when they
are used (as they must be) in integrals or derivatives. Only when finite
quantities are made from them can they be compared to real-world
measured quantities.
Considering them to be infinitesimals, the circumference at any radius
within that infinitesimal increment of radius is just 2πR and so the
(infinitesimal) area of the ring is 2πRdR and the (infinitesimal) charge
within the ring is σ 2π RdR.

S-4 (from PS, Problem 5b)

from module 1’s cover:
∫

dx

x
= `n x

.
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S-5 (from TX, Sect. 4b)

The “infinitesimals” method generally used in science and technology to
find the integrand of an unknown integral departs somewhat from the
mathematically rigorous limit technique. Nevertheless, the “infinitesi-
mals” method requires an understanding of the mathematical limit tech-
nique for its successful use. A good test bed for understanding is the
use of each method to derive the integrand for determining the area of
a (circular) disk, where you can perform the integral and make sure you
get the known answer of πr2.
¤ First, make sure you can derive the integrand using the limit method.
Help: [S-6]
¤ Then use your understanding of the limit method to derive the same
integrand using the usual science/technology method. Help: [S-7]
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S-6 (from AS, [S-5])

In the “mathematical limit” method we start by writing the area as:

A =

∫ r=R

r=0

dA =

∫ R

0

dA

dr
dr . (1)

Now we must find the integrand, dA/dr. We calculate the derivative by
considering a part of the disk, a circular ring of width ∆r that is between
r and r +∆r. From this ring we get the dericative by taking the limit
of the finite-element ratio as the width of the ring shrinks toward zero:

dA

dr
= lim
∆r→0

∆A

∆r
.

Now:
∆A = π(r +∆r)2 − πr2 = 2πr∆r + π(∆r)2 . (2)

Then:
dA

dr
= lim
∆r→0

∆A

∆r
= lim
∆r→0

(2πr + π∆r) = 2πr . (3)

Notice that the (∆r)2 term of Eq. (2) did not survive into the final
answer for the integrand. Then we have, finally:

A =

∫ r=R

r=0

dA =

∫ R

0

dA

dr
dr =

∫ R

0

2πr dr = πR2 . (4)

Of course we could have differentiated this answer to obtain the in-
tegrand but we wanted to illustrate the method so we can use it in
situations where we do not know the answer beforehand.
¤ Now use your understanding of the limit method to derive the same
integrand using the usual science/technology method. Help: [S-7]
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S-7 (from AS, [S-5])

The method usually used in science and technology to construct an inte-
grand reinterprets the statement of the variable of integration, “dA” in
Eq. (1) of this supplement, as an actual “infinitesimal” area whose value
is a length multiplied by a width. In our case the length is the finite
circumference of the ring (the single value for the length is discussed
several sentences further on), 2πr, while the width has the “infinites-
imal” value dr. Writing the (infinitesimal) area dA as the product of
that length times that width gives us:

dA = 2πr dr

so the integral is:

A =

∫ r=R

r=0

dA =

∫ R

0

2πr dr = πR2 .

The integrand derived here agrees exactly with the rigorously derived
integrand in Eqs. (2)-(4) of this supplement. Note that since the width
dr is “infinitesimal,” the circumference can be considered to be the same
at r and r+ dr. Of course the real reason those two circumferences can
be considered to be the same is that the difference disappears if we take
a proper limit as in Eq. (3) of this supplement.
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S-8 (from PS, problem 5c)

With xP À a we have a/xP ¿ 1, so we can rewrite the expression for
the potential in terms of the small quantity ε ≡ a/xP and use these two
small-quantity approximations:a

1

1− ε
≈ 1 + ε , (ε¿ 1)

and
`n (1 + ε) ≈ ε . (ε¿ 1)

Here is the equation rewritten in terms of ε:

V (ε) = ke
Q

a
`n

(

1

1− ε

)

and here it is after the two small-quantity approximations have been
applied and the answer has been restored to a function of xP :

V (xP ) ≈ ke
Q

xP
(a¿ xP ) .

aSee “Taylor’s Polynomial Approximation For Functions,” (MISN-0-4).
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MODEL EXAM

∫

x dx√
x2 + a2

=
√

x2 + a2

1. See Output Skills K1-K2 in this module’s ID Sheet.

2.

dx

point Px = 0

x = a x = xp

x

x

A uniformly distributed line of charge is placed along the x-axis from
x = 0 to x = a. The total charge on the line is Q.

a. Write down the expression for the potential at a point P on the
x-axis a distance xp from the origin due to an infinitesimal segment
of charge contained in infinitesimal segment of length dx at distance
x from the origin.

b. Summing up the contributions from all of the elements of charge,
find the expression for the potential at P due to this line of charge.

Brief Answers:

1. See this module’s text.

2. See Problem 5 in this module’s Problem Supplement.
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