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Input Skills:

1. Skills from “Ampere’s Law” (MISN-0-138).

Output Skills (Knowledge):

K1. Demonstrate how Ampere’s Law is modified when the electric field
vector varies with time.

Output Skills (Problem Solving):

S1. Apply the Ampere-Maxwell equation to situations where even if
there is no actual current in a region of space, the changing electric
field induces a magnetic field whose circulation is given by the
Ampere-Maxwell equation.

External Resources (Required):

1. M.Alonso and E. J. Finn, Physics, Addison-Wesley, Reading
(1970); for access see this module’s Local Guide.

Post-Options:

1. “The Faraday-Henry Law of Magnetic Induction” (MISN-0-142)
deals with a phenomenon that is complementary to the one dealt
with here. The subject is the electric fields that arise when mag-
netic fields vary with time.

2. “Maxwell’s Equations” (MISN-0-146).
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THE AMPERE-MAXWELL EQUATION;

DISPLACEMENT CURRENT

by

J. S.Kovacs
Michigan State University

1. Description

Ampere’s Law is an integral theorem that relates the line-integral of
the magnetic field ~B around a closed path to the total electric current
enclosed by that path. This theorem is not complete if there are electric
fields in the vicinity which vary with time. The modification of Ampere’s
Law including the effect of the changing electric field is the subject of this
module.

2. Suggested Procedure

In AF1 study Sections 20.9 and 20.10.

Note that ε0 ≡ 1/(4πke) and µ0 ≡ 4πkm.

Work problems 20.20 and 20.21 in AF.

Work Problems A and B in the next section.

Read pages 832-840 of K.W.Ford’s “Classical and Modern Physics,”
Vol. 2. For access, see this module’s Local Guide. Examples 1 and 2
on pages 833-835 are especially enlightening.

3. Exercises

A. The plates of a parallel-plate capacitor are circular disks of radius
0.040 meters, as shown in Fig. 1.

The plates, initially at a potential difference of 1.00 × 103 V are dis-
charged through a 10.0 ohm resistor.

a. Just before the discharge begins, when the capacitor potential is
constant, what is the magnetic field at a point 0.020 meters from

1M.Alonso and E. J. Finn, Physics, Addison-Wesley, Reading (1970). For access,
see this module’s Local Guide.
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Figure 1. The capacitor of Sect. 3, Exercise A.

the central axis of the capacitor (between the plates)?

b. At this same instant what is it 0.020 meters from the central axis
of the capacitor but outside of the region between the plates? (At
point P in the figure above. Assume the wires connecting the ca-
pacitor to the resistor join the plates at the center of the circular
disks, the wires coinciding with the central axis of the capacitor).

c. At the instant the discharge begins (the instant after the switch
is closed) a current begins to flow, reducing the charge on the ca-
pacitor. At that instant, what is the magnetic field at a point
0.020 meters from the central axis, between the plates of the capac-
itor? [Refer to MISN-0-151 for the time dependence of a current in
a circuit containing only a capacitance and a resistance. Also see
Fig. 21.15 and equation below equation 21.18 on page 487 of AF.
What you want is the current very near t = 0. Also you need to
use Gauss’s Law (MISN-0-133), to get the electric field between the
capacitor plates].

d. At that same instant as in (c), find the magnetic field at point P ,
0.020 meters from the axis of the capacitor (the wire) but outside of
the plates. Compare this with the field at the corresponding point
within the capacitor [the answer to part (c)].

B. Show that the product µ0ε0 both numerically and dimensionally equals
(1/c2) where c is the speed of light.

6
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Figure 2. An illustration of an element of surface area.

4. Comments

Refer also to the COMMENTS section of MISN-0-138.

Ampere’s Law for distributed currents is written as:
∮

C

~B · d~̀= µ0

∫

~j · N̂ dS,

where ~j is the value of the current density (amperes per square meter
whose direction is the direction in which charge is transported at the
point where ~j is evaluated), ~j · N̂ is the component of ~j perpendicular to
the element of area dS (see Fig. 2). The circle on the integral means that
the integral is around a closed path. The fact that there is not a circle
on the surface integral means that it is not over an entire closed surface
(more on this later).

Now observe, in Fig. 3, that in the steady state the current crossing the
shaded area A is the same as the current crossing the curved area—any
curved area which has the path C in common with the plane area A.
Thus in Ampere’s Law,

∮

C

~B · d~̀= µ0

∫

~j · N̂ dS ,

any surface defined by curve C can be used for the surface integral on
the right (see Fig. 4). (Note that the direction of the normal,
N̂ , and the path of integration C are related by the right-hand rule. The
directions of ~B and ~j, of course, are determined by the physics of the
situation and remain the same even when d~̀ and N̂ are both reversed).

For a closed surface S there is no curve C, as illustrated in fig-
ure 20.19, and if there is a steady-state current entering the surface at one

7
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Figure 3. An illustration of the application of Ampere’s
Law.

point and leaving it at another, the surface integral of ~j over the closed
surface is zero:

∮

S

~j · N̂ dS = 0.

This is just the statement of the conservation of charge, if there is no
gain or loss of charge inside the volume enclosed by the surface. [See also
section 20.9 of the Readings].

Now consider, as an example, a system consisting of two parallel
metallic plates separated by a distance D with positive charge on one and
negative charge on the other (see Fig. 5).

The wires coming out of the negative plate and out of the positive
plate are not connected (a gap between x and y) so the charges stay fixed
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Figure 4. Physical elements of Ampere’s Law.
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x y

C

Figure 5. A system of two charged, seperated, parallel
plates.

on the plates and no current flows in the wires. Thus if this system is
isolated there is no magnetic field anywhere and the line integral of ~B
around curve C (enclosing the wire) is zero:

∮

C

~B · d~̀= 0 ,

because no current crosses any surface enclosed by path C.

Even if we deform the plane surface enclosed by C to include the positive
plate, the above result is, of course, still true (see Fig. 6).

Now if points x and y are brought together, the negative charge will
begin to flow counter-clockwise (the current will flow clockwise from the
positive to the negative plate). So there is a current crossing the plane

surface S enclosed by C. Ampere’s Law says (see Fig. 7):

∮

C

~B · d~̀= µ0

∫

S

~j · N̂ dS .

However, there is no charge crossing the curved surface S ′, so if we
used this surface S′ to evaluate the right side we would get zero. If
we used the plane surface S, also enclosed by C, the integral gives the

x y

C
-
-
-
-
-
-
-
-

+
+
+
+
+
+
+

Figure 6. The system of Fig. 5 showing a chosen closed
path C.
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Figure 7. The system of Fig. 5 with the circuit now com-
pleted.

instantaneous value of the current crossing S. So there appears to be an
inconsistency.

To resolve this inconsistency, there must be something else that the
line integral of ~B depends upon besides the current density ~j. The differ-
ence between this situation and the steady current case is that in this case
the current is not a steady current. The current decreases as the charge
on the plates decreases and goes to zero when the plates are no longer
charged. The electric field, ~E, between the plates also changes with time
and it is this changing electric field crossing the curved surface S ′ which
must be included on the right side of Ampere’s Law to satisfy the law for
non-steady state conditions.

To see this we need to relate the surface integral of the electric field
vector ~E over a closed surface to the charge enclosed by that surface. This
relation you recall, is embodied in Gauss’s Law:

∮

S

~E · N̂ dS =
QS

ε0
,

where QS is the charge inside the volume enclosed by the closed surface
S.

If the charge inside the enclosed volume changes with time, it must
flow across the surface (this follows from charge conservation):

INCREASE in
charge (per second)
inside volume

=
current flowing
across surface into

volume

−
current flowing
across surface out

of volume
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Figure 8. A section of a steady current.

dQS

dt
=

∮

S

~jin · N̂ dS −

∮

S

~jout · N̂ dS.

where we have separated the current density into ~jin and ~jout). If we have
a steady state, then:

dQS

dt
= 0 =

∮

S

[~jin +~jout] · N̂ dS =

∮

S

~j · N̂ dS = 0,

as before.

For our circuit, QS is decreasing, there is only current flowing out of
the volume (across the area enclosed by loop C) so:

dQS

dt
= −

∮

S

~jin · N̂ dS.

From Gauss’s Law:

ε0

∮

S

~E · N̂ dS = QS ,

where the integral on the left is over the closed surface enclosing the
positive plate (both the curved and the plane surface are defined by curve
C).

Taking the derivative of both sides of this with respect to t:

ε0
d

dt

∮

S

~E · N̂ dS =
dQS

dt
.

So we have:

ε0
d

dt

∮

S

~E · N̂ dS = −

∮

S

~jout · N̂ dS,

where the integral on both sides is over the same closed surface. Combin-
ing both terms on the left side:

∮

[

ε0
d ~E

dt
+~jout

]

· N̂ dS = 0, (1)
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Figure 9. Ampere’s Law employed in the case of Fig. 8.

where N̂ is the outward normal at every element dS over the closed sur-
face.

This is true if what we have is not a steady current but a situation where
net charge is leaving the enclosed region. Recall that for a steady current
(where no net charge accumulates or leaves the region enclosed; see Fig. 8):

∮

S

[~jin +~jout] · N̂ dS = 0 =

∮

S

~j · ~N dS.

Comparing these last relations, we can see that ε0(d ~E/dt) piays the same
role that a current density, ~j, does.

So recapping, here is Ampere’s Law for the case where we have steady
currents (see Fig. 9):

∮

C

~B · d~̀= µ0

∫

~j · N̂ dS,

where the surface S is either the plane or curved surface bounded by the
curve C.

Now refer to Fig. 10 where the charge is leaving the region enclosed by
the curved and plane surfaces.

C

I

+

+

+

+

+

+

Figure 10. The case where charge is leaving the enclosed
region.
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Applying Eq. (1):

∮

S

[

ε0
d ~E

dt
+~jout

]

· N̂ dS = 0.

We break up this integral over the closed surface into surface integrals
over the curved (cu) and planar (pl) parts:

∫

pl

~jout · N̂ dS +

∫

cu

~jout · N̂ dS

∫

pl

ε0
d ~E

dt
· N̂ dS +

∫

cu

ε0
d ~E

dt
· N̂ dS = 0.

The second integral is zero because there is no current density crossing
the curved surface. The third integral is zero because no E fields cross
the planar (flat) surface. Hence,

∫

pl

~jout · N̂ dS = −ε0

∫

cu

d ~E

dt
· N̂ dS.

where in each surface integral N̂ is the normal pointing out of the region
enclosed by the surfaces. If over the curved surface N̂ points to the “right”
or into the enclosed region, then the sign of the right side should be made
positive. Hence, using Ampere’s Law,

∮

C

~B · d~̀= µ0

∫

~j · N̂ dS = µ0ε0

∫

d ~E

dt
· N̂ dS. (2)

where the second integral above is over the part of the plane surface that
is enclosed by C (not a closed surface) and the third integral is over the
curved surface if N̂ points to the right, same as for the plane surface.

Eq. (2) says that, in the case where there is no steady current, the

line integral of ~B around a closed curve is equal to the surface integral of
(µ0ε0d ~E/dt) over the surface traced by C (where again the direction of
the integral around C and the direction of N̂ are related by the right-hand
rule).

Eq. (2) is Ampere’s Law for the situation where there is no steady

current, but ~E varies with time. If both are present (steady current and

changing ~E field), we have:

∮

C

~B · d~̀= µ0I + µ0ε0

∫

S

d ~E

dt
· N̂ dS. (3)

13
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This is the Ampere-Maxwell relation, a companion to the Faraday-Henry
Law:

∮

C

~E · d~̀= −
d

dt

∫

S

~B · N̂ dS. (4)

These two, with Gauss’ Law for Electric and Magnetic fields,
∮

S

~E · N̂ dS =
QS

ε0
, (5)

where QS is the charge inside the closed surface S, and:
∮

S

~B · N̂ dS = 0, (6)

The four equations, Eqs. (3)-(6), make up the set called Maxwell’s Equa-
tions. (MISN-0-146 enlarges upon this).

5. Brief Answers to Assigned Problems

20.20 The current out of the cube is I = −12a3ε0t if one corner of the
cube is at the origin.

20.21 The answer assumes the cube is located as shown in Fig. 11.
The answer AF gives has (1/c2) instead of µ0ε0, where c is the speed
of light. The two answers are the same.

Problem A

x

x+a

x

z

y

Figure 11. The physical situation of problem 20.21
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a. zero

b. zero

c. In an RC circuit with the capacitor initially charged to potential V ,
the current I = (V/R)e−t/RC , decreasing exponentially with time.
At t ≈ 0, when the switch is just closed, I ≈ V/R. Between the
plates,

ε0E =
Q

πr2

0

,

where Q is the charge on either plate and πr2
0
is the area of the plate

(see the parallel plate capacitor in MISN-0-133). Then ε0(dE/dt) =
1/(πr2

0
).

Using the Ampere-Maxwell equation between the plates, we get for
B, 0.02 meters from the axis: | ~B| = 2.5× 10−4 teslas.

d. | ~B| = 1.0× 10−3 teslas.

Problem B See text.
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LOCAL GUIDE

The readings for this unit are on reserve for you in the Physics-Astronomy
Library, Room 230 in the Physics-Astronomy Building. Ask for them as
“The readings for CBI Unit 145.” Do not ask for them by book title.
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PROBLEM SUPPLEMENT

Note: Problem 2 also appears in this module’s Model Exam.

ε0 ≡ 1/(4πke) and µ0 ≡ 4πkm

1.

I I

x

z

y

Consider the cube above whose sides are 2 meters.

In this region the eletric field vector is given by:

~E = at[(5− y)ŷ − zẑ],

where a is a constant, t is the time in seconds, y and z are the coordi-
nates along the y- and z-axes. In addition, there is a thin wire carrying
a steady current I along the y-direction, entering the cube at the left
and leaving the cube at the surface on the right.

a. What is the total charge enclosed by the cube? [F]

b. Is it increasing or decreasing? [C]

c. What is the line integral of ~B around the shaded surface in the
direction indicated? [H]

d. What is the line integral of ~B around the top surface (in the direc-
tion determined by the right hand with the thumb pointing in the
positive z-direction)? [A]

17
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e. How much net current crosses the shaded area? E]

f. What net current enters the left face of the cube? [B]

g. What net current crosses the front face of the cube? [I]

2.

R

r

ß

Above is a capacitor formed of a pair of very large parallel plates. They
are closely spaced so the parallel-plate capacitor formula can be used
to compute the electric field ~E at all radii out to R. The capacitor is
being charged so a current I flows onto the top plate and away from
the bottom one.

Around the path enclosing the shaded circular area S, because of the
symmetry of the situation, we can safely assume ~B is tangent to the
circle of radius r and constant at all points on the circle.

Use the Ampere-Maxwell relation to find the Magnetic field at points
inside this plate. [You’ll need to use Gauss’ Law to find ~E as a function
of the current I] [D]

What is B when the capacitor is fully charged and the ~E inside is
uniform? [G]

18
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Brief Answers:

A. −8µ0ε0a.

B. I − 20ε0a.

C. It is decreasing linearly with time.

D. B =
µ0Ir

2πR2
.

E. I + 12ε0a.

F. Q = −16ε0at.

G. zero.

H. −8µ0ε0a.

B. µ0I + 12µ0ε0a.

I. zero.
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MODEL EXAM

1. See Output Skills K1 and S1 in this module’s ID Sheet. The actual
exam may have one or both of these skills, or neither.

2.

R

r

ß

Above is a capacitor formed of a pair of very large parallel plates. They
are closely spaced so the parallel-plate capacitor formula can be used
to compute the electric field ~E at all radii out to R. The capacitor is
being charged so a current I flows onto the top plate and away from
the bottom one.

Around the path enclosing the shaded circular area S, because of the
symmetry of the situation, we can safely assume ~B is tangent to the
circle of radius r and constant at all points on the circle.

Use the Ampere-Maxwell relation to find the Magnetic field at points
inside this plate. [You’ll need to use Gauss’ Law to find ~E as a function
of the current I]

What is B when the capacitor is fully charged and the ~E inside is
uniform?

Brief Answers:

1. See this module’s text.

20
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2. See this module’s Problem Supplement, problem 2.
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