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Input Skills:

1. Vocabulary: solenoid, toroid, inductance, induced voltage, in-
duced current, induced magnetic field, Faraday-Henry law, Lenz’s
law (MISN-0-142).

2. Use Ampere’s law to determine the magnetic field due to a long
straight current (MISN-0-138).

Output Skills (Knowledge):

K1. Vocabulary: coaxial cable, henry, inductor, self-inductance.

K2. Write down Ampere’s Law and from it derive the self-inductance
of a toroidal solenoid, explicitly justifying each step.

K3. Write down Ampere’s Law and from it derive the self-inductance
per unit length of a coaxial cable, explicitly justifying each step.

K4. Starting from the relation between power, voltage and current in
a steady state circuit, derive the energy stored in the electric field
of an inductor.

K5. Describe the flow of energy: (a) when the current through an
inductor is increased; (b) when the current through an inductor
is very gradually decreased; and (c) when the current through an
inductor is quickly decreased.

Post-Options:

1. “Two Element DC-Driven LRC Circuits” (MISN-0-151).

2. “Velocity of a Signal in a Coaxial Cable” (MISN-0-150).
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SELF-INDUCTANCE AND INDUCTORS

by

Peter Signell
Michigan State University

1. Introduction

A solenoid or a toroid, sometimes of miniature size, is used in elec-
tronic circuits to: (1) slow the rate of change of electric current; (2) “tune”
a circuit to a particular oscillational frequency; or (3) control the speed of
transmission of signals. In these applications one is making use of the fact
that a change in the current going though the device produces a change
in the associated magnetic field and that in turn induces a current that
opposes the change in the original current. A device used in that manner
is called an “inductor” and the strength of its change-opposing charac-
ter is called its “self-inductance” or simply its “inductance.” This (self)
inductance is measured in the S.I. unit called the “henry,” so a circuit
designer may specify an inductor of, say, 35 milli-henries to achieve one
of the three above-mentioned aims.

2. Self-Inductance L

2a. The Definition of L. “Inductance” in general includes potentials
and currents induced in one conductor by a time-changing current in
another conductor, but “self-inductance” refers to potentials and currents
that are induced in a single conductor by its own time-changing current.
A device used for this purpose usually has the shape of a solenoid or a
toroid.

A current flowing through an inductor of course sets up a magnetic
field so changes in the current produce changes in the magnetic field. Such
changes produce an induced voltage drop in the inductor, a voltage drop
that opposes the change in the current. The magnitude of the induced
voltage is proportional to the time-rate-of-change of the current, as we
have seen,1 so we write:

Vind = L
dI

dt
. (1)

1See “Magnetic Inductance,” MISN-0-142.
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Figure 1. A
toroidal solenoid.

Here L is a proportionality constant that depends on the geometry of the
inductor and the inductor’s material: it is called the inductor’s inductance.
An inductor’s inductance can be much enhanced by placing its loops of
wire around a magnetic material such as iron.

2b. L When the Flux is Known. If one knows the flux through the
surface bounded by a circuit, then the self-inductance can be determined
by integrating Eq. (1) to get:

Φ = LI . (2)

For example, if the flux enclosed by a loop is 0.026Tm2 when the current
in the loop is 1.3A, then the inductance of the loop is L = 20mH. If the
inductor is altered to contain 15 successive loops glued together, then the
flux met by the current will be increased by a factor of 15 and so will L.

2c. L for a Toroidal Solenoid. To find the self-inductance of a
toroidal solenoid, we use Ampere’s law and we draw the integration loop
as a circle of radius r from the center of the toroid (see Fig. 1). If r is less
than the inner radius of the toroid, there is zero current going through
any surface bounded by the integration loop. If r is between the inner
and outer radii of the toroid the the current going through the enclosed
surface is NI where N is the number of turns of wire carrying the current
I. If r is greater than the outer radius of the toroid, there is again zero
net current going through any surface bounded by the integration loop
(the current going one direction through the surface is exactly canceled by
the current going the other way through the surface). Then by Ampere’s
law, the magnetic field inside the solenoidal loops is:

B(r) =
2 km N I

r
. (3)
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Figure 2. Cross-section of a
coaxial cable.

If the radius of each loop is much smaller than the toroidal radius, then
r will vary little over the cross-sectional area A of each loop and we can
take r as a constant. To get the flux in a single loop of the winding, we
need merely multiply the B by the loop area A. Then for the N windings
in the inductor:

Φ = N AB =
2 km N2 I A

r
. (4)

Then from Eq. (2):

L =
2 km N2 A

r
. (5)

Typical numbers for a circuit toroid will give an extremely small induc-
tance unless the flux is enhanced through the use of an iron core inside the
solenoidal loops. This enhancement may be by a factor of five thousand
or more.

3. L/` for a Coaxial Cable

3a. Physical Description of a Coaxial Cable. Physically, a coaxial
cable looks like a fat round wire: a good example is the cable that feeds
television programs to TV sets from a “cable company.” If you were to cut
through such a cable you would see a central conducting wire surrounded
by a dielectric material (usually flexible white plastic). This insulating
material is surrounded by a cylindrical sheath woven from conducting
wires (woven to make it flexible). That outer conductor is, in turn, covered
by a thin skin of flexible insulating plastic (see Fig. 2). Current flows
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Figure 3. Longitudinal view
of a coaxial cable in a hypo-
thetical circuit.

down one conductor and exactly the same amount of current flows in the
opposite direction in the other conductor. One can imagine a voltage
source connected between the inner and outer conductors at one end of
the cable and a resistor connected between them at the other end, as in
Fig. 3. We will assume that the current traveling the inner wire is along
its surface, at a radius ri (a good assumption for high-frequency waves).
We will call the radius of the outer conductor ro.

3b. Getting B. For self-inductance we need flux per unit current,
and for flux we need the magnetic field. For a coaxial cable the entire
magnetic field is between the two conductors. That is easily seen because
by Ampere’s law there is zero net current crossing a cross-sectional area
larger than the outside conductor (remember that the currents in the two
conductors are equal but opposite in direction). For the region between
the two conductors, Ampere’s law immediately shows that the magnetic
field is simple that of the inner conductor. For a long straight wire it is:2

B =
2 km I

r
,

and of course the direction of the field is everywhere perpendicular to the
outward cylindrical radius from the inner wire.

3c. Getting L/`. To get the flux in our coaxial cable we must integrate
the component of the magnetic field normal to a surface bounded by the
loop of electrical current. To make it easy we choose a surface that is

2Apply Ampere’s law in your head or see “Magnetic Fields from Currents,” MISN-

0-138.

A

B C

D

Figure 4. A longitudinal view of
the coaxial cable showing the in-
tegration surface ABCD for ob-
taining the flux.
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radial, running between the two conductors and along the length of the
cable (see Fig. 4). Now the element of flux at a particular radius is just
the value of B there times the element of area at that radius:

dΦ = (B) dA =

(

2 km I

r

)

` dr .

where ` is the length of the cable. Integrating,

Φ =

∫

dΦ =

∫ ro

ri

(

2 km I

r

)

` dr = 2 km I ` `n (ro/ri) .

Finally, then, the self-inductance per unit length of cable is:

L/` =
Φ/`

I
= 2 km `n (ro/ri) . (6)

The total inductance for any particular piece of cable can be obtained by
multiplying L/` by the piece’s length.

4. Inductive Energy In a Circuit

4a. Energy Needed to Set up a Current. When a circuit switch
is closed, starting a flow of current through a circuit, an inductor in the
path of the current resists the rise of the current from zero by developing a
counter-voltage drop (a voltage rise). The source of voltage in the circuit
must push the current past this voltage rise, doing work equal to the
voltage rise times the amount of charge pushed through it. The power
expended (the energy per unit time) is just the current (the charge per
unit time) times the self-induced voltage:

P = I L
dI

dt
.

Using P = dE/dt we can easily integrate both sides of:

dE = I L dI

to get:

E =
1

2
LI2 . (7)

This is the energy that must be expended by the circuit’s energy source
in order to raise the circuit current from zero to the value I.
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4b. The Energy is Recoverable. The energy expended in setting
up a current in an inductor is recoverable if the circuit’s voltage source
is removed. Assuming there is still a complete circuit without the volt-
age source, the inductor will keep the current flowing until the energy
of Eq. (7) has been completely dissipated in the circuit’s resistances or
perhaps transferred to a capacitance for storage there.

4c. Location of the Energy. We describe the energy of Eq. (7) as
being stored in the magnetic field of the inductor. That stored energy
was zero in the beginning of our example, when the circuit current was
zero so the inductor’s magnetic field was zero. As the current, hence
the inductor’s magnetic field, increased the energy in the magnetic field
increased as the circuit’s voltage source supplied energy to the field. If
the current became steady, the inductor’s magnetic field became steady
along with it and there was no longer a transfer of energy from the voltage
source to the inductor’s field. However, the energy stored in the inductor’s
magnetic field stays stored there.

4d. Energy Flow When a Current is Stopped. Suppose a steady
current is flowing in a circuit containing an inductor, and then one opens
a switch so current can presumably no longer flow: what happens to the
energy stored in the inductor’s magnetic field? The answer is that as the
switch is opened the current will drop quickly, creating a large induced
voltage that ionizes the air across the switch gap and thus causes an
electric arc. The energy stored in the inductor’s magnetic field is thus
dissipated in chemical and heat energy in breaking down the air in the
switch gap and in burning the contact points in the switch and in burning
anything else in the vicinity. In fact, the stored energy in a large inductor
can be extremely dangerous to anyone attempting to stop the current in
a hurry.
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Glossary

• co-axial cable: a circuit element that looks like a long fat plastic-
covered wire, containing in successive cylindrical layers: an inner solid-
wire conductor, a surrounding flexible dielectric, and an outer braided-
wire sheath. The circuit’s current goes down one conductor (solid or
sheath) and back the other.

• henry: the SI unit of self-inductance, abbreviated H and defined to
be an ohm-second. Thus: H ≡ Ωs = V sA−1.

• inductor: a circuit element whose purpose is to provide self-
inductance, an electrical circuit analog of mechanical inertia (mass).
An inductor is usually in the shape of a solenoid or a toroid. The in-
ductance of an inductor depends on the geometry of the inductor and
the magnetic susceptibility of the materials of which the inductor is
constructed. Inductors in electronic circuits typically are in the mH
range.

• self-inductance: the negative of the induced voltage around a loop
divided by the time-rate-of-change of magnetic flux through any surface
bounded by that loop: L = −Vinduced/Φ̇. The minus sign shows that
the induced voltage opposes the change in the flux. The SI unit of
inductance is the henry (which see).
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MODEL EXAM

1. See Output Skills K1-K5 in this module’s ID Sheet. As usual, “Vo-
cabulary” means defining the words as well as being able to use them
properly.

Brief Answers:

1. See this module’s text.

12


