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SOURCELESSNESS OF THE MAGNETIC FIELD

by

J.Kovacs and P. Signell
Michigan State University

1. Introduction

Gauss’s Law applied to Magnetic fields differs from Guass’s Law ap-
plied to electric fields in that the expression of the law for magnetic fields
has the net flux of ~B across any closed surface always equaling zero:∮
~B · N̂ ds = 0. For electric fields the right side equals zero only if the net

charge enclosed by the closed surface is zero, otherwise it’s proportional
to the net charge enclosed. This then indicates that “magnetic charges,”
the analog of electric charges which are the sources of the electric fields,
do not exist.

2. Assigned Readings and Problems

1. In AF1 read section 19.14. Note that ε0 ≡ 1/(4πke) and µ0 ≡ 4πkm.

Study again Section 19.2 and Figure 19.1 on page 419 where the flux
of a vector field through a surface is defined.

2. Work problems 19.26* and 19.27*. In Problem 19.26, evaluate the flux
across surface (aefd) two ways: first directly, then secondly, knowing
the flux over all other pieces of the closed surface using Gauss’s Law
for ~B.

3. Comments

Referring to Figure 19.1 of AF, note that while the direction of vector
~V (or ~B, for our purposes) at a point is unique (determined by the physics

of the situation in the case of ~B), the direction of the unit vector, N̂
normal to the element of surface on the integration surface is somewhat
ambiguous. It is normal to the surface, but is it “up” or “down”? To
remove this ambiguity, the convention is adopted that N̂ is normal to the
surface in such a direction that it points out of the volume enclosed by
the surface if the surface is closed. If the surface is not closed, N̂ points

1M.Alonso and E. J. Finn, Physics, Addison-Wesley, Reading (1970); for access see
this module’s Local Guide.
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Figure 1. .

away from the concavity enveloped by the surface. If the surface is an
isolated plane surface the unit normal needs to be specified another way.

Compare the Gauss’s Law for magnetic fields,
∮
~B · N̂ ds = 0, over

all closed surfaces, with that for electric fields:∮
S

~E · N̂ ds = 4πkeq0 ,

where q0 is the charge enclosed by the surface S. For example, consider
two unlike charges and the electric field lines in their vicinity, as shown
in Fig. 1.

If we surround the positive charge with some imaginary closed surface
(excluding the negative charge) then notice that the lines of ~E point out

of the surface, everywhere on the surface, so that ~E · N̂ at every point on
the surface is always a positive number. Thus when this is multiplied by
the element of surface area, ∆S, and summed over the whole surface, this
adds up to a positive number. This positive number is (4πke) times the
charge enclosed.

Similarly, if we surround only the negative charge then ~E everywhere
points into the surface while N̂ points outward so that ~E · N̂ is always
negative.

Now if our imaginary closed surface surrounds some volume between
the two charges, with the charges not enclosed, then over parts of the
surface ~E · N̂ is positive while on other parts it is negative. Multiplying
~E ·N̂ by ∆S and summing over the whole closed surface we will be adding
plus and minus contributions. Gauss’s Law, in fact, tells us that these
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N pole

S pole

Figure 2. .

contributions add to zero exactly if no charge is enclosed. Now in this
latter case notice that the lines of ~E are continuous, entering the closed
surface on one side and leaving it on another, whereas in the cases where a
charge is enclosed the lines of ~E emerge from or terminate on the charge.
The charges are the sources of ~E, and the surface integral of tells us the
“strength” of the source.

In the case of magnetic fields there are no sources, no magnetic
“charges,” no isolated magnetic poles. Hence, over any closed surface,

∮
S

~B · N̂ ds = 0.

The lines of ~B are continuous, and the negative and positive contributions
of ~B · N̂ always cancel over any closed surface.

We might ask: what about a bar magnet?

All of the lines of ~B appear to emerge from the N-pole and terminate on
the S-pole (see Fig. 2). So, we might ask, would not the flux of ~B over
a closed surface surrounding only the N-pole have only positive contribu-
tions making a net zero flux impossible? The answer is that while the lines
do emerge from the N-pole outside of the magnet, these lines enter the
S-pole of the magnet, are continuous through the inside of the magnet,
directed toward the N-pole inside the magnet, connecting continuously
with the lines that leave the N-pole, as shown in Fig. 3.

The net effect is that when we take into account the contribution to the
flux through the closed surface from the ~B inside the magnet, the total
flux is zero over the closed surface.
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Figure 3. .

4. Answers to Assigned Problems

19.26 a. −2400T cm. Be sure you understand why the sign is negative.

b. zero.

c. +2400T cm = (B cos θ) × 1500 where cos θ = 4/5, θ being the

angle between N̂ and ~B

19.27 (µ0Ib)/(2π)`n(1 + a/r) = flux of ~B through coil. This flux is +
or −, depending upon how we defined N̂ direction of coil. To get
this answer we need to integrate ~B · N̂ ds over the area of the coil.
However, ~B is not constant so we cannot just multiply | ~B| by the
coil’s area.

In the sketch below, | ~B| at distance x from the wire is (µ0I)/(2πx) so
the flux element through the shaded region is dφ = (bµ0I)/(2πx) dx.

I b

a

r

x

dx
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LOCAL GUIDE

The readings for this unit are on reserve for you in the Physics-Astronomy
Library, Room 230 in the Physics-Astronomy Building. Ask for them as
“The readings for CBI Unit 139.” Do not ask for them by book title.
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PROBLEM SUPPLEMENT

1.
z
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The pyramid above is a closed surface formed by the four plane tri-
angular surfaces aOc, aOb, cOb and abc. In this region of space there
exists a uniform magnetic field ~B = Bxx̂+By ŷ+Bz ẑ where Bx is the

x-component of ~B, etc.

a. What is the flux of ~B through surface aOc? [H]

b. What is the flux of ~B through surface aOb? [D]

c. What is the flux of ~B through surface cOb? [B]

d. For surface abc, it could be a tedious chore to find the unit normal
to the surface. Use, instead, Gauss’s Law and the results of parts
(a), (b), and (c) to find the flux of ~B through the surface. [G]

2. Consider the field ~B = B1yx̂ + B1xŷ where B1 is a constant and
x and y are the cartesian coordinates of a point relative to a fixed
coordinate system. Evaluate the magnitude of the flux of ~B through
the rectangular surface of area S = ab shown below, oriented in the
y-z plane: [C]

10



MISN-0-139 PS-2

z +a0

z0

y0 y +b0

area S = ab

z

y

3. Consider the field ~B = B0xx̂ where B0 is constant and x is the distance
along the x-axis. Evaluate the flux of this field through the sides of a
closed cube, A meters on a side whose edges are parallel to the coordi-
nate axes and one corner of which is at the origin of the coordinates:
[F]

A

A

A

x

y

z

Use the result to prove that no physical ~B field can have the functional
dependence on the coordinates as that written above. [A]

4. Explain how Gauss’s Law for magnetic fields is a consequence of the
physical properties that:

a. there are no point sources of magnetic fields as there are for electric
fields; and

b. the lines of ~B are continuous and close on themselves.

In your explanation, illustrate with sketches what Gauss’s Law gives
you if you have a source of the field enclosed by the Gaussian (integra-
tion) surface and contrast this with a sketch for the case of continuous
lines of the vector field. [E]
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Brief Answers:

A. For a physically realizable field, the flux of ~B over any closed surface
must be zero. A field whose ~B = B0xx̂ is thus not physically realizable.

B. −(1/2)bcBx.

C. (1/2)SB1(b+ 2y0).

D. −(1/2)abBz.

E. See text and comments section of this study guide.

F. B0A
3.

G. (1/2)(bcBx + acBy + abBz).

H. −(1/2)acBy.
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MODEL EXAM

1. See Output Skill K1 in this module’s ID Sheet.

2.
z

c

b

x

a

O
y

The pyramid above is a closed surface formed by the four plane tri-
angular surfaces aOc, aOb, cOb and abc. In this region of space there
exists a uniform magnetic field ~B = Bxx̂+By ŷ+Bz ẑ where Bx is the

x-component of ~B, etc.

a. What is the flux of ~B through surface aOc?

b. What is the flux of ~B through surface aOb?

c. What is the flux of ~B through surface cOb?

d. For surface abc, it could be a tedious chore to find the unit normal
to the surface. Use, instead, Gauss’s Law and the results of parts
(a), (b), and (c) to find the flux of ~B through the surface.

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 1.
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