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Input Skills:

1. State the change in potential energy of a system that is initially
and finally stationary, given the work done on that system (MISN-
0-20).

2. Calculate the work done on a given charge moved through a given
potential difference (MISN-0-117).

3. Calculate the work capable of being done on a given charge by a
given seat of EMF (MISN-0-119).

4. . Given the dimensions, calculate the capacitance of a metal sphere
and of a parallel plate capacitor, both in air and with a given
dielectric as part of the system (MISN-0-135).

Output Skills (Knowledge):

K1. Derive the expression for the energy stored in the electric field of
a capacitor.

K2. State the general expression for the stored-energy-per-unit-volume
associated with an electric field; derive that expression for the case
of a parallel-plate capacitor.

Output Skills (Problem Solving):

S1. Calculate the potential energy of capacitor-type charge configura-
tions given any two of the three quantities: capacitance, charge,
and potential difference.

S2. Calculate the forces on the plates of a capacitor or on a slab of
dielectric between the plates of a capacitor, given the electrical
charge state of the capacitor.

External Resources (Required):

1. M.Alonso and E. J. Finn, Physics, Addison-Wesley, Reading
(1970). For access, see this module’s Local Guide.
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ELECTROSTATIC FIELD ENERGY

by

O. McHarris and P. Signell

1. Introduction

In this unit we are primarily concerned with using the energy stored
in charge configurations which produce electric fields. The expression for
that stored energy has been derived for the particular case of the elec-
tric field of capacitors. One of the advantages of knowing the potential
energy of any system is that one can use it to calculate the mechanical
forces operating on the system,1 and this is true in the case of capaci-
tors also. One must be certain, however, to include all energy changes
associated with slight movement of the object for which the force is being
calculated.

2. Readings and Problems to Solve

In AF2 study Section 19.12 (p. 437) and do Problems 19.10(c), 19.15,
19.16 (b,c), and 19.17. Note that AF use the term “relative permittivity”
and the symbol εr to label exactly the same quantity for which other
authors use the term “dielectric constant” and the symbol K or κ: εr ≡
K ≡ κ.

Brief Answers:

19.10 energy (series)= 1.3× 10−4 joules
energy (parallel)= 1.3× 10−4 joules

19.16 b) 4.5× 10−9 joules
c) 3.4× 10−9 joules. The “lost” energy has

heated up the connecting wire.

1See “Work, Power, Kinetic Energy, Work-Energy Principle” (MISN-0-20).
2M.Alonso and E. J. Finn, Physics, Addison-Wesley, Reading (1970). For access,

see this module’s Local Guide.

5

MISN-0-137 2

19.17 d) ~E takes account of the charges on both

plates. ~F must take account only of
the charges on one plate attracting the
charges on the second plate. Multiplying Q times
~E would give 2 ~F .
For the case in which V is kept constant,
d(energy)= (V 2 A)/(8πke x

2) dx
and F = (V 2 A)/(8πke x

2).

3. Notes

The energy of a capacitor has been shown (see above) to be:

U =
CV 2

2
=

Q2

2C
,

and we also know3 that C depends on the physical dimensions and dielec-
tric constant of the capacitor. Thus we may ask how a capacitor’s energy
changes as one of its dimensions changes, and in answering that we obtain
the expression for the force on the object that moves to change the dimen-
sion. For example, Problem 19.17 in AF asks you to calculate the force
of attraction between the two plates of a parallel-plate capacitor; it asks
you to do this by calculating the change in energy of the capacitor when
the plate separation is increased by a small amount and by then equating
the increase in potential energy to the work done on the capacitor.

Since C = Q/V , a change in C requires a change in charge, potential
difference, or both. One must examine the physical set-up for any given
case in order to determine which of Q and V changes. If the capacitor
is first charged, and then the charging device is disconnected before we
change C, Q will be unable to change when C changes: there is no way
for the charge carriers to leave or enter the capacitor plates. Since Q is
then a constant, the chain rule for derivatives gives:

dU = −
Q2

2C2
dC.

The proportionality constant (Q2/2C2) is positive, so our equation tells
us that if, for example, U increases by dU , C decreases by |dC|. Thus the

3See “Electrostatic Capacitance” (MISN-0-135).
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forces would initially act in such a way4 as to increase C if the capacitor
parts could move.

A second typical case is where we wish to know the forces in a capac-
itor while a constant voltage source, such as a battery, is kept connected
to it. As we change C in this case, only Q will change as the battery
adjusts the charges on the plates to keep Q = CV . In analogy with the
constant-Q situation, one is tempted to say: write the capacitor’s energy
in terms of the constant V and then differentiate. However, this would
give only part of the energy change. Since the battery is still connected to
the capacitor, we must also include the work it does in moving the charge
carriers as the capacitance changes.5

dW = V dQ.

Thus in this case the change in energy of the whole system, as C changes,
is:

d(energy) = dU − dW = −(V 2/2) dC.

Notice that for a given V , Q, C and dC, and with the battery maintaining
a constant voltage, the initial small change in energy with C is the same
as in the case where the capacitor was charged but unconnected to the
battery.6 This makes sense. Consider, for example, the force of attrac-
tion between the two plates of a capacitor. The force exists because of
the Coulombic forces between the charges on the two plates and in the
dielectric and, for a given capacitor with a given charge, the magnitude
and especially the direction of the force will not depend on whether the
capacitor is connected to a battery.

Acknowledgments

Preparation of this module was supported in part by the National
Science Foundation, Division of Science Education Development and Re-
search, through Grant #SED 74-20088 to Michigan State University.

4See “Potential Energy and Motion: Potential Curves, Turning Points” (MISN-0-
22).

5See “Resistive D.C. Circuits” (MISN-0-119).
6However, a real change in the capacitor, resulting in a real change in C, would

require different energies in the two cases. In the present unit we have only calculated
forces within a fixed capacitor.
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LOCAL GUIDE

The readings for this unit are on reserve for you in the Physics-Astronomy
Library, Room 230 in the Physics-Astronomy Building. Ask for them as
“The readings for CBI Unit 137.” Do not ask for them by book title.
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MODEL EXAM

1. See Output Skills K1-K2 in this module’s ID Sheet. One or more of
these skills may be on the actual exam.

2. A dielectric slab is partially inserted between two plates of a parallel-
plate capacitor, as shown below. Assuming that the potential applied
to the capacitor is constant, calculate:

a. the capacitance of the system.

b. the energy of the capacitor as shown.

c. the force exerted on the slab.

d. whether the slab is ejected or attracted in.

x

w

w

a
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Brief Answers:

1. See this module’s ID Sheet.

2. This system is equivalent to two connected capacitors, one of length x
and one of length (w − x).
Are they connected in series or parallel?

a. C =
(Kw2 − xw(K − 1)

4πkea
.

b. E = v2
Kw2 − xw(K − 1)

8πkea
.

c. Find F by calculating the change in energy with change in x of the
entire system.

F =
v2w(K − 1)

8πkea
.

d. Potential energy increases as x increases. Therefore the system, if
left to itself, tends to decrease x in order to decrease the potential
energy. Thus the slab is attracted inward.
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