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CAPACITANCE AND CAPACITORS

by

William F. Faissler

1. Introduction

1a. Why We Study Capacitors. This module deals with capaci-
tance, capacitors and a number of related topics. Although it may ap-
pear to you as if capacitance and capacitors are simply a digression in the
process of understanding the electrostatic field, capacitors are one of the
more important building blocks used in constructing modern electronic
equipment. Thus the material you learn from this module is actually
useful in dealing with electronic circuitry.

1b. Capacitance Defined. Two conductors separated from each
other by empty space or by an insulator form a capacitor. Thus the
word “capacitor” refers to a device consisting of the two conductors and
whatever is in the space between them. A good example is the ordinary
“Cable Television” cable. In this module it will be shown that if one of a
capacitor’s conductors has a charge of +Q on it and the other has a charge
of −Q, then the potential difference, V , between the two conductors is
linearly proportional to the charge:

V = Q/C. (1)

The proportionality constant’s inverse, C, is called the “capacitance” of
the capacitor. The numerical value of C depends on the sizes of the two
conductors, on their relative positions, and on what is between them. It
is independent of both Q and V .

1c. A Summary of What Follows. In this module we will derive the
following results, except that we will assume vacuum between the plates
of capacitors so K = 1:

1. For a parallel plate capacitor, the type commonly found in electronic
circuits:

C =
KA

4πked
(2)

2. For a cylindrical capacitor, exemplified by a coaxial cable:

C =
KL

2ke`n (R2/R1)
(3)
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3. For any capacitor, the voltage-current relationship:

i = C
dV

dt
(4)

4. For any capacitor, the energy required to charge it:

U =
1

2

Q2

C
=

1

2
QV =

1

2
CV 2 (5)

5. For a number of capacitors in parallel, the equivalent capacitance:

CEQ = C1 + C2 + . . .+ Cn . (6)

and for the capacitors in series:

1

CEQ

=
1

C1

+
1

C2

+ . . .+
1

Cn

(7)

Finally, in the last section of the module, the effect of putting a
dielectric material between a capacitor’s conductors (making K 6= 1) will
be discussed.

2. Capacitors

2a. The Parallel Plate Capacitor. The prototype of all capacitors
is the parallel plate capacitor illustrated in Figure 1: we will here show
that its capacitance is C = A/(4πked). This capacitor consists of two
parallel conducting plates, each with area A and separated by a distance
d. For the present this gap is assumed to be empty (vacuum); later in
the module we will discuss what happens in the other usual case where

+ + + + + +

- - - - - -

Plate A

Plate B

dE
`

Figure 1. A parallel plate capacitor.
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an insulating dielectric material is put between the two plates. One of
the plates has a charge of +Q while the other has a charge of −Q and
in this particular case we have assumed that the upper plate is positive
while the lower plate is negative.

¤ By applying Gauss’s law, you can easily see that the magnitude of the
electric field in the gap between the two plates is:1

E = 4πke

Q

A
(8)

and the direction of the electric field is from the upper plate to the lower
plate as shown in the figure.

Next you can calculate the potential difference between the two
plates, here labeled A and B:

V = −

∫ B

A

~E · d~̀=

∫ B

A

4πke

Q

A
d` ,= 4πke

Qd

A

Thus the voltage across the capacitor is proportional to the charge on
the capacitor, with the constant of proportionality being a combination
of geometrical factors. This can be written as V = Q/C [Eq. (1)] where
the capacitance C is given by:

C =
A

4πked
(parallel plate) (9)

You recognize this as the result advertised earlier [Eq. (2)] for the case of
vacuum (K = 1); later we will discuss the case of a capacitor made with
an insulator other than vacuum.

2b. The Cylindrical Capacitor. The very common “cylindrical”
capacitor is illustrated in Fig. 2. It consists of two concentric cylinders
of length L, separated by a gap. For now it is empty space. One of the
cylinders has a charge of +Q on it and the other has a charge of −Q; in
this particular case, the positive charge has been put on the inner cylinder.

¤ By applying Gauss’s law you can easily see that the magnitude of the
electric field in the gap between the two cylinders is:

E = 2ke

Q

Lr
(R1 ≤ r ≤ R2) (10)

1See “Gauss’s Law Applied to Cylindrical and Planar Charge Distributions” (MISN-
0-133).
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Figure 2. A cylindrical capacitor.

where r is the radius of the point at which you are calculating the field.
Next you can calculate the potential difference between the inner and
outer cylinders:

V = −

∫ B

A

~E · d~r =

∫ R2

R1

2ke

Q

L

dr

r

= 2ke

Q

L
(`nR2 − `nR1)

= 2ke

Q`n (R2/R1)

L

(11)

Once again, the voltage is proportional to the charge on either cylinder
and the constant of proportionality is a collection of geometrical factors.
Again writing V = Q/C we find:

C =
L

2ke`n (R2/R1)
(12)

2c. A Generalization. In applying Gauss’s law to the two configu-
rations considered so far, it was necessary to assume that the point at
which the electric field was being calculated was so far from the edges of
the plates or cylinders that there was no effect due to the variation of the
fields near the capacitor’s edges. But what happens when the capacitor
plates are so small or the cylinders so short that this cannot be true? It
can be shown, although it is beyond the scope of this module to do so,
that the form shown in Eq. (1) is true in all cases. For any arrangement
of two isolated conductors with one having a charge of +Q and the other
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−Q, the potential difference between the two conductors is proportional
to Q and the constant of proportionality 1/C depends only on geometri-
cal factors. For the simple cases of two parallel plates or two concentric
cylinders, Eq. (9) or (12), respectively, can be used to calculate the capac-
itance. For other, less idealized, geometries more complex formulae must
be used. In any case, the capacitance C can be measured by electronic
means and the validity of Eq. (1) is well established by experiment.

2d. The Units of Capacitance. Capacitance is measured in units
of farad (abbreviated “F”); from Eq. (1) you can see that if one coulomb
of charge is placed on a one farad capacitor, there will be a potential
of one volt across the capacitor. For most electronic uses, the farad is
a very large unit; commonly used capacitors are measured in units of
microfarads, nanofarads and even picofarads.

¤ If you rearrange Eq. (1) you will find that capacitance has the dimen-
sions of “charge per unit voltage” (voltage = electrostatic potential dif-
ference).

2e. Capacitors Are Neutral. As illustrated in Fig. 1, the normal
capacitor as a whole is electrically neutral; one plate of the capacitor has
a charge of +Q on it while the other has a charge of −Q.

This sometimes creates a semantic problem, since capacitors are com-
monly said to “store charge.” If you are concentrating on only one plate
of the capacitor, then you may well be able to treat the capacitor as if it
is “storing charge” but in general the capacitor as a whole is electrically
neutral. When we say, “a capacitor has a charge Q on it,” we mean that
it has a charge of +Q on one plate and −Q on the other.

2f. The Voltage-Current Relation in a Capacitor. To find out
what happens when the applied voltage changes with time, we simply
rearrange Eq. (1) and differentiate it:

Q = C V

dQ

dt
= V

dC

dt
+ C

dV

dt

dQ

dt
= C

dV

dt
.

The last equation follows because C, which depends only on geometrical
constants, is not a function of time so dC/dt = 0. Finally, dQ/dt (the
rate of change of the charge on one of the plates) is the current flowing

9
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Figure 3. The symbol for a capacitor.

in the lead to that plate:

i = C
dV

dt

This relationship is often used in determining the effects of capacitors in
electronic circuits.

2g. The Symbol for a Capacitor. The symbol for a capacitor, to
be used in drawing schematic diagrams, is illustrated in Fig. 3.

3. Useful Relationships

3a. The Energy Stored in a Charged Capacitor. It is often useful
to know the amount of potential energy stored in a charged capacitor.
Consider a capacitor C having charge of q. The potential difference

between the two plates is given by Eq. (1): V = q/C. If a small amount
of charge, dq, is moved from one plate to the other, then the amount of
work done is:

dW = V dq = q dq/C . (13)

Moving charge from one plate to the other is equivalent to any other
method of charging the capacitor. Thus if you simply integrate Eq. (13),
starting with zero charge and ending with a final charge Q, you will have
calculated the work needed to charge the capacitor and hence you will
have calculated the potential energy stored in the charged capacitor:

U =

∫ Q

O

q dq/C =
q2

2C

∣

∣

∣

∣

∣

Q

0

=
Q2

2C
=

1

2
V Q =

1

2
CV 2

where the last results follow by using Eq. (1).
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Q1

C1

Q2

C2

Q3

C3

QT

QT

V

CEQ

Figure 4. Three capacitors connected in parallel and the
equivalent capacitor.

3b. Capacitors in Parallel. If two or more capacitors are in parallel,
as in Fig. 4, they can be replaced by one equivalent capacitor in any elec-
tric circuit. In this parallel arrangement the same potential is necessarily
applied to all capacitors:

V =
Q1

C1

=
Q2

C2

=
Q3

C3

If you think about the process of charging the capacitor, you will be able
to convince yourself that the total charge delivered down the common
wire to the top plates of the capacitors is simply the sum of the charges
on the individual top plates:

Qtot = Q1 +Q2 +Q3

but of course
Qtot = CEQV

so
CEQ = C1 + C2 + C3

If n capacitors are connected in parallel, this derivation can be generalized
to show that the equivalent capacitance is given by:

CEQ = C1 + C2 + . . .+ Cn.

11
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V1
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CEQ

Figure 5. The capacitor equivalent to three connected in
series.

3c. Capacitors in Series. Just as in the parallel case, two or more ca-
pacitors in series can be replaced by one equivalent capacitor (see Fig. 5).
If you start with all the capacitors uncharged and add a charge Q to the
top plate of the top capacitor, then +Q must leave the lower plate of the
top capacitor, leaving it with a charge of −Q if the capacitor is to remain
neutral. The charge that leaves the lower plate of the top capacitor must
end up on the top plate of the second capacitor, etc. Thus each of the
capacitors ends up with the same charge Q on its top plate. The voltage
across capacitor 1 is then:

V1 = Q/C1,

across capacitor 2 is
V2 = Q/C2,

and
V3 = Q/C3,

The total voltage across all three capacitors in the sum of V1, V2, and V3:

V = V1 + V2 + V3 .

If the same charge were put on the equivalent capacitor, then the voltage
across it would be

V =
Q

CEQ

Since this is the equivalent capacitor, one that can replace the three capac-
itors, then the two voltages must be the same. Combining these equations

12
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gives:
Q

CEQ

=
Q

C1

+
Q

C2

+
Q

C3

so
1

CEQ

=
1

C1

+
1

C2

+
1

C3

From the derivation above, it should be clear that if n capacitors are put
in series, the equivalent capacitance would be

1

CEQ

=
1

C1

+
1

C2

+ . . .+
1

Cn

4. [

Dielectric]Dielectrics

capacitor— with dielectric4. a. Capacitors with Insulators If the
two conducting plates of a capacitor are separated by an insulating mate-
rial, a “dielectric,” then it is found experimentally that the capacitance is
K times as great as it is when the same plates are separated by vacuum.
The constant K is called the “dielectric constant” of the insulating ma-
terial. It does not depend on the potential difference across the capacitor
or on the geometry of the capacitor. Table 1 contains a list of dielectric
constants for common materials.

Since the dielectric constant of the insulating material is a multiplier
on the capacitance of any capacitor, the capacitance of a parallel plate
capacitor is, in general:

C =
KA

4πked

while the capacitance of a similarly insulated cylindrical capacitor is:

C =
KL

2ke`n (R2/R1)

Since the value of K for vacuum is 1 by definition of the units, Eqs. (9)
and (12) are really just special cases of Eqs. (2) and (3).

4b. Electric Fields in Dielectrics. The effects of dielectrics can be
described in terms of the way they alter electric fields. If a dielectric is
placed in a region of space where the electric field would otherwise have

13
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+Q

-Q

Die lect r ic d

Figure 6. A parallel plate capacitor with dielectric between
the plates.

a magnitude of E, and no other changes are made, then the magnitude of
the electric field inside the dielectric is found to be reduced by a factor of
K: it is E/K where K is again the dielectric constant. This fact makes it
easy to understand the increase in the capacitance of the capacitor when
the empty space is replaced by a dielectric. As an example, consider the
parallel plate capacitor shown in Fig. 6. If there were no dielectric,
the electric field would be:

E = 4πke

Q

A
.

With the dielectric the field is:

E = 4πke

Q

KA

The potential difference between the two plates is then:

V = 4πke

Qd

KA

The capacitance is thus as in Eq. (2):

C =
KA

4πked

4c. An Atomic Model. It is easy to construct an atomic model that
makes plausible what is happening inside a dielectric subjected to an
electric field. Each molecule of the dielectric material either already has
an electric dipole moment or it develops one due to the applied electric

14
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Figure 7. A dielectric in a capacitor.

field. Under the influence of the external electric field, these dipoles are
aligned. The situation is shown in Fig. 7. These dipoles are aligned by
the external electric field and as a result the electric field in the material
is reduced. A more complete development of this model is the subject of
another module.

4d. Dielectric Breakdown. For each type of dielectric there is a
maximum electric field that can be applied to it before the dielectric
breaks down and becomes a conductor. For some dielectrics this “break
down” is a reversible process, as with insulating liquids, while for others
it is irreversible, as with most circuit components. The maximum electric
field that each dielectric can withstand is given in Table 1.

15
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Table 1. Dielectric properties of several materials.
Material Dielectric Breakdown

constant field
(Kv/cm)

Vacuum 1.0000 ∞

Air 1.00054 8
Water 78. *
Paper 3.5 140
Mica 5.4 1600
Porcelain 6.5 40
Fused Quartz 3.8 80
Pyrex Glass 4.5 130
Polyethylene 2.3 500
Polystyrene 2.6 250
Teflon 2.1 600
Pyranol oil 4.5 120
Titanium dioxide 100 60
*conducting
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Glossary

• capacitance: the charge-storing capability of a capacitor, dependent
on the geometrical configuration of the capacitor.

• capacitor: an electrical device that stores equal and opposite charge
on two conducting surfaces separated by an insulator.

• dielectric: an insulating material.

• dielectric constant: a numerical factor that describes the amount
to which a dielectric material increases the capacitance of a capacitor.
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PROBLEM SUPPLEMENT

ke = 8.99× 109 Nm2 C−2

Note: Problems 9 and 10 also occur in this module’s Model Exam.

1. A capacitor is connected to a 150V voltage source and is charged until
it holds 3.2× 10−8 C. Without being discharged it is then connected
to a 450V source. How much additional charge is finally stored on
the capacitor?

2. A 5.7 nF capacitor consists of two parallel square plates separated by
0.35mm. How much charge is stored on the plates when a potential
difference of 230V is applied to the capacitor? With the capacitor still
connected to the voltage source the plate separation is decreased to
0.25mm. What is the new value for the charge stored in the capacitor?

3.

L

L

R1
R1

R2

=

=

=

4.5 cm

6.7 cm

23.8 cmR2

A particular cylindrical capacitor consists of two coaxial cylindrical
metal shells with the dimensions given in the figure above. Compute
the capacitance of the system.

4. In Sec. 2d of the text a statement was made that the unit of capaci-
tance, the farad, is a very large unit. In order to begin to get a feeling
for how large one farad is, suppose you had a parallel plate capacitor
with square plates separated by a 1mm air gap. If the capacitance
is 1 F, how wide must the plates be? Also, calculate the width of the
plates for 1µF, 1 nF, and 1 pF capacitors.

5. Compute the equivalent capacitances for the following arrangements
of four capacitors, each of 8.0 pF capacitance:

17
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a.

b.

c.

d.

e.

18
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f.

g.

h.

6. An electrical engineer needs a 25µF capacitor for a “breadboard” cir-
cuit he is working on. Although the shop’s stockroom is temporarily
out of 25µF capacitors, they do have 20µF capacitors. The engineer
takes 20 of these capacitors and proceeds to construct a series and/or
parallel combination of 20µF capacitors until the equivalent capaci-
tance is 25µF. Sketch a diagram that illustrates the combination of
capacitors.

7. Consider a parallel plate capacitor with plates separated by a 1.25mm
air gap, each with a surface area of 6.00m2. The capacitor is charged
with a potential difference of 120V across the plates. How much en-
ergy is stored in the capacitor? The capacitor is disconnected from
the voltage source so the charge is now trapped on the plates of the
capacitor. With one plate fixed, the other plate is moved away from
the fixed plate, increasing the separation of the plates to 1.50mm.
What is the new value for the amount of energy stored in the capac-
itor? Calculate the amount of work that must be done to increase
the plate separation as stated. How is this quantity related to the
energy stored in the capacitor, before and after the change in plate
separation?

19
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8. A cylindrical capacitor with air between the cylinders has a capac-
itance of 7.5 pF. The capacitor is connected to a constant voltage
source and is completely charged. Without disconnecting the volt-
age source, pyranol oil is introduced between the cylindrical shells,
completely displacing the air.

a. Calculate the new capacitance of the capacitor.

b. Does the energy stored in the capacitor increase or decrease?

c. Does the energy stored increase or decrease if the capacitor is dis-
connected from the voltage source before adding the oil? Why or
why not?

9. Compute the capacitance of a parallel plate capacitor with plates of
area 25 cm2 separated by 1mm of dielectric with a dielectric constant
of 3.0.

10. Show the reduction to one capacitance that is equivalent to:

C1 C2

C4

C3

Brief Answers:

1. Q = 6.4× 10−8 C

2. Q = 1.3× 10−6 C; Q′ = 1.8× 10−6 C Help: [S-1]

3. C = 3.3× 10−11 F= 33 pF

4. The widths of the plates would be: 10 km, 10m, 34 cm, and 1 cm,
respectively

20
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5. Ceq = (a) 2.0 pF; (b) 32.0 pF; (c) 8.0 pF; (d) 8.0 pF; (e) 3.2 pF; (f)
6.0 pF; (g) 10.7 pF; (h) 4.8 pF

6.

or

7. U = 3.06×10−4 J; U ′ = 3.67×10−4 J; W = 6.1×10−5 J Help: [S-2] ;
the increase in energy stored is equal to the work done on the capac-
itor.

8. a. 34 pF

b. increases

c. decreases; Q is now constant while C increases, and

U =
1

2

(

Q2

C

)

.

9. 6.6× 10−11 F = 66 pF

10. CEQ =
C1C2

C1 + C2

+ C3 + C4

21
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS, problem 2b)

Q′ =
(5.7× 10−9 F)(0.35mm)(230V)

0.25mm
= 1.8× 10−6 C

S-2 (from PS, problem 7)

As d changes, in this problem, Q cannot change so V changes as well
as C. There are several different ways of obtaining the solution, some
more succinct then others. Here is a final part of one solution (not a
particularly succinct one):

W =

(

(6.00m2)

(2)(4π)(8.99× 109 Nm2 C−2)

)

×

(

(144V)2

1.50× 10−3 m
−

(120V)2

1.25× 10−3 m

)

= 6.1× 10−5 J .
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MODEL EXAM

ke = 8.99× 109 Nm2 C−2

1. See Output Skills K1-K5 in this module’s ID Sheet. One or more of
these skills, or none, may be on the actual exam.

2. Compute the capacitance of a parallel plate capacitor with plates of
area 25 cm2 separated by 1mm of dielectric with a dielectric constant
of 3.0.

3. Show the reduction to one capacitance that is equivalent to:

C1 C2

C4

C3

Brief Answers:

1. See this module’s text.

2. See Problem 9 in this module’s Problem Supplement.

3. See Problem 10 in this module’s Problem Supplement.
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