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CHARGE LAYERS AND CAPACITORS

by

Peter Signell

1. Introduction

In order to understand the common electronic circuit element called
a capacitor, a metallic device used to temporarily store charge, we must
examine the way that charge is stored and the electric fields and electric
potential it produces. Fortunately, electrostatic charges introduced into a
metal very quickly migrate to form a thin layer very close to the metal’s
surface. This charge layer is so thin that it can be safely approximated
as a mathematical surface of zero thickness, resulting in a very simple
description of the variation of the electric field and potential across it.

2. Field Across a Single Charge Layer

2a. The Thin Charge Layer. In order to connect the macroscopic
(usual) and microscopic properties of a thin layer of charge, we must re-
late the charge distribution descriptors for those two cases. The ordinary
and greatly enlarged cross-sectional views of a charge layer are shown in
Fig. 1. Since no detail or structure can be seen in the edge-on macroscopic
view, the appropriate description is the charge per unit surface area, the
surface density σ, as seen from Regions 1 and 2 of the figure. Microscop-
ically, however, we see a three-dimensional distribution of charge and so
we describe it by the volume charge density ρ in a layer of thickness t.
The two descriptions are related by σ = ρt as can easily be derived by
evaluating the amount of charge seen within a definite area as viewed in
each case from Region 1.1

2b. The Microscopic Field Across the Layer. The microscopic
details of the electric field in the vicinity of the charge layer shown in
Fig. 1 can be easily written down after mentally constructing appropriate
Gaussian surfaces and then applying Gauss’s law.2 Applying Gauss’s law
twice, maintaining the appropriate x-direction symmetry for the Gaussian

1If the definite area is labeled S, the amounts of charge within it for the two cases
are σS = ρSt.

2See “Gauss’s Law Applied to Cylindrical and Planar Charge Distributions” (MISN-
0-133).
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Figure 1. Two views of the same thin electric charge layer
of thickness t.

surface each time, we obtain for each region of a layer centered on x = 0:

E1(x) = −2πkeσ ,

E3(x) = 4πkeρx = 4πkeσ
(x

t

)

,

E2(x) = 2πkeσ ,

(1)

and these are plotted in Fig. 2. The force on a small test charge in each of
the regions can be checked mentally, using the E(x) line plotted in Fig. 2,
to be sure that the Eqs. (1) are reasonable (i.e., positive charges repel a
positive charge). Note also that E(x) is continuous across the regional
boundaries:

E1

(

−
t

2

)

= E3

(

−
t

2

)

and E3
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Figure 2. The electric field
across a uniform volume charge
density layer, assuming no other
charges in the neighborhood.
This is the same view as the “mi-
croscopic” one in Fig. 1.
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Figure 3. The apparent disconti-
nuity in the electric field across a
very thin charge layer. Substitute
β ≡ 2πke.

2c. E(x) Across a Charged Surface. The electric field actually
varies continuously across a very thin layer of charge, but it appears to be
discontinuous if we approximate the layer by a mathematical surface. The
example of microscopic continuity shown in Fig. 2 can be taken out from
under the microscope, so to speak, and then the thickness of the charged
layer will be so small as to cause no discernible effect on the designated
values of the electric field in the two outside regions (Regions 1 and 2 in
Fig. 2): the resulting picture is shown in Fig. 3, where one can see that
the discontinuity across a charged surface is:3

∆Echarge surface = 4πkeσ . (2)

3. Potential Across a Charge Layer

3a. Definition of V(x). Recall that the potential difference between
two points is defined as the work per unit charge necessary to carry a
small positive test charge from one point to the other.4 Since we have to
work against a positive electric field, the potential difference of two points
along a one-dimensional field can be written (with a few steps left out):

∆V = V (x2)− V (x1) = V2 − V1

∆V = −

∫ x2

x1

~E · d~x = −

∫ x2

x1

E(x) dx.
(3)

3b. ∆V Across a Charge Layer. No matter how the electric field
varies inside a charge layer, its discontinuity between the layer’s surfaces

3To see that this equation holds for any charged surface, apply Gauss’s law directly
to the surface in Fig. 3.

4For further understanding of electrostatic potential and an analogy to the gravi-
tational case, see “Electrostatic Potential Due to Discrete Charges” (MISN-0-116).
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Figure 4. Electric field for an
arbitrarily varying volume charge
density in a layer of thickness t.
Substitute β ≡ 2πke. The net
shaded area is the potential differ-
ence between the edges.

is always given by Eq. (2), ∆E = 4πkeσ. We will now show that the
electrostatic potential drop across a charged surface is zero. To see this
for the general case, we first construct an arbitrarily varying electric field,
E(x), corresponding to some arbitrarily varying volume charge density,5

as in Fig. 4. The potential difference across the layer is seen by Eq.(3) to
be the integral of E(x) from one surface to the other. Since the integral
of a function is just the net area under its graphical representation, the
potential difference between the surfaces is just the net area under the
E(x) curve in Fig. 4. If we now say that the layer thickness t is very small,
then the area will be very small and so will the potential difference. In
fact, if we let the thickness go to zero in order to approximate the charge
layer by a mathematical surface, the potential difference will obviously go
to zero.

3c. Two Other Ways of Seeing ∆V → 0 as t → 0. It may seem
strange that the work needed to carry a positive test charge across the
surface goes to zero as the thickness t goes to zero, since the volume charge
density ρ increases as t → 0. Notice, however, that ρ is related to the
derivative of the electric field, not to the field itself. The actual values of
the field within the surfaces do not change6 as we let t→ 0, so the force
on our test charge at various internal points doesn’t change. The force
stays the same and the distance decreases so the work decreases.

5If the charge distribution is uniform in the y- and z-directions, then its volume
charge density is given by the slope of E(x): dE(x)/dx = 4πkeρ(x).

6That is, the field at a fixed fractional value of the distance between the layer
boundaries does not change. This is easily proved using Gauss’s law.
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Figure 5. The effect on E and V as a uniform volume
charge density layer is collapsed to zero thickness.

Another way of seeing the zero potential drop result is to use the calculus
definition of the average of a function to write7

∆V = −

∫ x2

x1

E(x) dx = −[Ē(x1, x2)]t.

where Ē(x1, x2) is the average electric field in the interval x1 ≤ x ≤ x2.
As t → 0 the average field stays constant (see Fig. 4), hence ∆V → 0.

3d. V (x) and E(x): Uniform Charge Density Example. Either
by using the integral of Eq. (3), or by the differential slope relation

7Recall the definition of the average of a function f(x) over the interval (x1,x2):

f̄(x1, x2) ≡

∫ x2

x1

f(x) dx

(x2 − x1)
.
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} Figure 6. Schematic representation of a capaci-
tor’s cross section. Surface area is A, thickness is
d.
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and8

dV (x)

dx
= −E(x),

we can construct the V (x) corresponding to E(x) for the case of uni-
form volume charge density within the layer. This is shown in Fig. 5a,
and its appearance when collapsed into a mathematical surface is shown
in Fig. 5b. Note that we can easily check the qualitative relationships
between E and V at various x values by inspection.

4. E(x) and V (x) in Capacitors

A capacitor may be constructed from two parallel metallic plates
separated by a layer of insulating material. The plates have equal but
opposite charge, distributed on their surfaces, as shown in Fig. 6. We find
E(x) and V (x) between the plates simply by combining the individual
fields from each of the surfaces. The result is:

~E = 4πkeσ x̂ for 0 ≤ x ≤ d

= 0 for other x
(4)

and
V = V0 − 4πkeσ x for 0 ≤ x ≤ d

= 0 for other x
(5)

where σ is the surface charge density on the positively charged plate. We
can now integrate the electric field [as in Eq. (3)] and write down the
potential difference between the plates:

V = 4πke

Qd

A
; C ≡

Q

V
=

A

4πked
, (6)

where Q is the total charge stored on the positively charged plate, A is
the area of each plate, and C, defined for any system as Q/V , is called
the system’s “capacitance.”9 It is the system’s ability to hold charge per
unit potential difference, and it is the charge-storage capability used in
designing electronic circuits.

8The following equation comes from factoring charge from both sides of the dif-
ferential relation between potential energy and force. See “Potential Energy Curves,
Motion, and Turning Points” (MISN-0-22).

9See “Electrostatic Capacitance” (MISN-0-135) where values are calculated for typ-
ical capacitor geometries as well as for combinations of capacitors.
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PROBLEM SUPPLEMENT

Note: Problem 6 also occurs in this module’s Model Exam.

ke = 8.99× 109 Nm2 C−2

1. For a parallel-plate capacitor with air between plates of surface
area A and separation d, carrying total charges of +Q and −Q:

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-
d

x̂

a. Use Gauss’s law to find the electric field between the plates.
Help: [S-1]

b. Find the potential difference between the plates. Help: [S-5]

c. Determine the capacitance.

2. A parallel-plate air capacitor having area A = 3.0×101 cm2 and spacing
d = 1.0mm is charged to a potential difference of 5.00× 102 V.

a. Calculate its capacitance C.

b. Find the magnitude of the charge on each plate.

c. What is the value of the electric field between the plates?

3. A parallel-plate capacitor having circular plates of radius 10.0 cm and
1.5mm spacing is charged to a potential difference of 2.00 × 102 V.
It is then disconnected from the voltage source and the plates are
pulled apart to twice the original separation. Calculate the value of
the following quantities before and after the plates are pulled apart.

a. the charge on the plates
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b. the electric field between plates

c. the potential difference between the plates

d. the capacitance

4. Use Gauss’s law to determine the discontinuity ∆E in an electric
field across a charged surface with surface charge density σ = 5.0 ×
10−6 C/m2? Help: [S-4]

5. The electric field varies inside a charge layer as shown below:

x

x = 0

E(x) =

E
-E ; x « -d_

20

2E__
d

x ;-
d_
2

» x » d_
2

0

E ; x » d_
20

x = - d_
2

x = d_
2

Show that ∆V is zero in this case by:

a. calculating the net area under the E(x) curve by geometrical means.

b. calculating the integral directly.

c. finding the integral using the average value of the electric field.

6. It has been experimentally shown that between the earth’s surface
and the region 50 km above the surface there is a potential difference
of about 3× 105 V. Calculate the surface charge density on the surface
of the earth which is implied by these numbers. Note: Treat the
“earth’s surface to 50 km up” region as a parallel plate capacitor. [Data
from “The Earth and Its Atmosphere as a Leaky...Capacitor,” Martin
Uman, American Journal of Physics - Vol.42, p. 1033 (1974).]
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Brief Answers:

1. a. ~E = 4πke

Q

A
x̂

b. V = 4πke

Qd

A

c. C =
A

4πked

2. a. C = 2.7× 10−11 C/V Help: [S-2]

b. Q = 1.3× 10−8 C

c. E = 5.0× 105 V/m

3. a. Q = 3.7× 10−8 C before and after Help: [S-3]

b. E = 1.3× 105 N/C ,before and after

c. V = 2.0× 102 V before; V = 4.0× 102 V after

d. C = 1.9× 10−10 C/V before, C = 9.3× 10−11 C/V after

4. ∆E = 5.6× 105 N/C

6. 5× 10−11 C/m2
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS, problem 1a )

(E+)A+ (E+)A = 4πke(+Q)

( ~E+) = 2πke

Q

A
x̂

( ~E
−
) = 2πke

−Q

A
(−x̂)

~E = ( ~E+) + ( ~E
−
) = 4πke

Q

A
x̂

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

E+ E-

S-2 (from PS, problem 2a)

C =
(30)

(

10−4 m2
)

4π(8.99× 109 Nm2 C−2)(0.001m)

= 2.7× 10−11 C/V

S-3 (from PS, problem 3a)

Reread the problem and see whether or not the battery is still connected
to the plates while the “pulling apart” is going on.

S-4 (from PS, problem 4)

To use the data given, you must know how to get total charge from the
area of a surface and the “surface charge density” on that surface [see
Input Skill (1) in this module’s ID Sheet ].

S-5 (from PS, problem 1b)

The integrand, the electric field, is constant, so the integral is trivial.
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MODEL EXAM

ke = 8.99× 109 Nm2 C−2

1. See Output Skills K1-K3 in this module’s ID Sheet.

2. It has been experimentally shown that between the earth’s surface
and the region 50 km above the surface there is a potential difference
of about 3× 105 V. Calculate the surface charge density on the surface
of the earth which is implied by these numbers. Note: Treat the
“earth’s surface to 50 km up” region as a parallel plate capacitor. [Data
from “The Earth and Its Atmosphere as a Leaky...Capacitor,” Martin
Uman, American Journal of Physics - Vol.42, p. 1033 (1974).]

Brief Answers:

1. See this module’s text.

2. See Problem 6, this module’s Problem Supplement.

16


