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GAUSS’S LAW APPLIED TO

CYLINDRICAL AND PLANAR

CHARGE DISTRIBUTIONS

by

Peter Signell, Michigan State University

1. Introduction

1a. Overview. In this module Gauss’s law is used to find the electric
field in the neighborhood of charge distributions that have cylindrical
and planar symmetry. For each of these two symmetries, useful Gaussian
surfaces are easily constructed. Once an appropriate Gaussian surface is
constructed, the electric field is easily found from Gauss’s law:1

∮

~E · n̂ dS = 4πkeqS (1)

where qS is the net charge enclosed by the Gaussian surface S and ke is
the electrostatic force constant.

1b. Usefulness. It is very useful to know the electric field in the
neighborhood of cylindrical and planar charge distributions, for these ge-
ometries are the ones used in coaxial cables and capacitors. Knowing
the electric fields helps one determine how these devices will react in
electronic circuits. In addition, the same general ideas are used in deter-
mining the magnetic fields produced in solenoids, transformers, coaxial
cables, chokes, and transmission lines.

2. Cylindrical Symmetry: Line Charge

2a. Approximating a Real Line by an Infinite One. When deal-
ing with a line of charge, we will treat it as though its ends had been
extended to infinity. This approximation makes the resulting electric
field especially simple and easy to solve for. The solutions we get for
the infinitely long line will be applicable to the finite-line case for electric
field points that are much closer to the middle part of the line than to
its ends. For practical applications the “infinite line” is almost always a
good approximation to the actual finite line.

1See “Gauss’s Law and Spherically Symmetric Charge Distributions” (MISN-0-132)
for an introduction to Gauss’s law and the rules for using it.
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Gaussian surface

line of charge

Figure 1. A cylindrical Gaussian surface is used to apply
Gauss’s law to a line of charge.

2b. The Gaussian Surface. For an infinitely long line with uniform
linear charge density2 along it, the preferred Gaussian surface is cylindri-
cal (see Fig. 1). This follows from taking the two rules for constructing
Gaussian surfaces and combining them with knowledge of the electric
field’s directions and equi-magnitude surfaces.3 The axis of the cylindri-
cal surface is along the line of charge, while the surface’s radius is that of
the point at which you wish to know the electric field. The length of the
cylindrical surface is immaterial.

2c. The Electric Field. Applying Gauss’s law, Eq. (1), to the case of
a straight line of charge with uniform linear charge density (charge per
unit length) λ, we will show that the magnitude of the electric field at a
distance r from the line is:

E = 2ke
λ

r
. (2)

Proof: If the length of the cylindrical Gaussian surface is L, then the
charge enclosed by the surface is:

qS = λL . (3)

The component of the electric field normal to either flat end of the closed
cylindrical surface is zero, but the component normal to the cylindrical

2The term “linear charge density” means the charge is being described as a certain
amount of charge per unit length along the wire. This is in contrast to “volume charge
density” where the charge is described as a certain amount of charge per unit volume
within the wire. For uniform cross-sectional distributions, the linear charge density
equals the cross-sectional area times the volume charge density.

3For the two rules for constructing Gaussian surfaces, see Ref. 1. For derivation
of the electric field directions and equi-magnitude surfaces see “Electric Fields from
Symmetric Charge Distributions” (MISN-0-153).
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part of the surface is just the field itself:

∮

~E · n̂ dS =

∫

cyl.

~E · n̂ dS +

∫

ends

~E · n̂ dS = E

∫

cyl.

dS + 0 = E(2πrL).

(4)
Using Gauss’s law, Eq. (1), to combine Eqs. (3) and (4), we obtain the
solution, Eq. (2). Of course in a real problem our solution would be valid
only in the region where the distance to the line of charge is much smaller
than the distance to the line’s nearest end. As an amusing “aside,” notice
that Eq. (2) says that the sound of a long “line” of traffic will only die off
as r−1 rather than the r−2 one obtains for a point source.

3. Other Cylindrical Distributions

3a. Electric Field of a Cylindrical Surface. A cylindrical surface
with finite radius, constant surface charge density, and infinite extent, has
an electric field whose preferred Gaussian surfaces are identical to those
for an infinite charged line (see Fig. 2). This is because both the line and
the cylindrical surface have the same geometrical symmetry and hence the
same electric field directions and equi-magnitude surfaces.4 For a charged
surface of radius R and surface charge density σ, the amount of charge

4See “Electric Field from Symmetric Charge Distributions,” (MISN-0-153), the
section on infinitely long cylindrical charge distributions.
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Figure 2. The Gaussian surface for a cylindrical surface
charge distribution (on a cylindrical surface of radius R).
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enclosed by a Gaussian surface of radius r and length L is:

qS = 2πRLσ for r > R

= 0 for r < R
(5)

Exactly as in the case of the line of charge, the integral of the normal
component of the electric field over the Gaussian surface is:

∮

~E · n̂ dS = (2πrL)E. (6)

Then using Eqs. (5) and (6) in Gauss’s law, Eq. (1), we find:

E = 4πke
σR

r
for r > R

= 0 for r < R
(7)

3b. Linear vs. Surface Charge Density. We may describe the
charge distribution on a cylindrical surface as either a surface charge den-
sity or a linear charge density.

The surface charge density σ is the charge per unit area on the cylin-
drical surface:

σ =
q

2πr`
(8)

where 2πr` is the surface area of a cylinder of radius r and length `.

The linear charge density λ is the (total) charge per unit length along
the cylindrical surface:

λ =
q

`
= 2πrσ . (9)

¤ Show that if q = 1.0 × 10−6 C, r = 1.0 cm, and ` = 1.0m, then σ =
1.6× 10−5 C/m2 and λ = 1.0× 10−6 C/m.

3c. The Coaxial Cable. A coaxial cable, such as that used to trans-
port TV signals or the signal from a pickup to a stereo amplifier, consists
of two metallic conductors with cylindrical symmetry, sharing a common
cylinder axis and separated by some kind of insulator. The center cylinder
is usually a solid copper wire while the outer one is usually a sheath of
braided wire (see Fig. 3). This construction makes the cable mechanically
flexible. As far as the electrical properties are concerned, there might as
well be two concentric cylindrical surfaces5 as shown in Fig. 4. The mag-
nitude of the linear charge density on the two cylinders is the same, so the

5Electrostatic charges reside on the surfaces of metallic conductors: see “Electro-
static Properties of Conductors” (MISN-0-136).
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dielectric
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Figure 3. A cross-sectional view of a
typical coaxial cable.
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Figure 4. A cross-
sectional view of the
charge surfaces in a
coaxial cable. The
radius of the inner
cylinder is exagger-
ated for the purpose
of illustration.

magnitude of the surface charge density is higher on the inner cylinder.
For ordinary uses the charges on the two cylinders are of opposite sign.

3d. Electric Field of the Coaxial Cable. Gauss’s law shows that
the electric field of a charged coaxial cable is zero except between the
conducting cylindrical surfaces, where it is equal to the field produced by
the inner cylinder. Applying Gauss’s law to the coaxial cable’s various
regions, as shown in Fig. 4, the electric field is readily found to be:

~EI = 0

~EII = 2ke
λ

r
r̂

~EIII = 0 Help: [S-1]

(10)

In region II of Fig. 4, λ is negative, so that particular electric field is
directed radially inward.

9

MISN-0-133 6

PP

A A

E
`

E
`

E
`

CC

n̂

n̂

n̂

BB

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

a) b)

Figure 5. (a) A cross-sectional view of a Gaussian surface
(dashed lines) for an infinite plane of charge; and (b) a three-
dimensional view of the Gaussian surface.

4. A Single Sheet of Charge

4a. Approximation: An Infinite Sheet. We will restrict ourselves
to the case of a uniform planar charge distribution of infinite extent:
in other words, a flat sheet with a uniform surface charge density that
extends to infinity. These restrictions make the resulting electric field
especially simple and easy to determine. The solutions we get will be valid
for any application in which the sheet of charge can be approximated by
an infinite sheet with the same surface charge density. This approximation
will be a good one when the distances from relevant electric field points
to the edges of the physical sheet are all much larger than the distance to
the nearest point on the sheet of charge. Thus the edges will “look” an
almost infinite distance away (in comparison). This will be the case for
important charge-storing components in electronic circuits.

4b. The Gaussian Surface. For a uniform planar charge distribu-
tion of infinite extent, all parts of the preferred Gaussian surface can be
shown to be either parallel or perpendicular to the plane of the charge.
This requirement would be satisfied, for example, by a box-like surface
that is cut by the plane into two equal boxes (see Fig. 5). The “parallel
or perpendicular” requirement follows from taking the two rules for con-
structing Gaussian surfaces and combining them with our knowledge of
the electric field’s directions and equi-magnitude surfaces. Any surface
that satisfies the “parallel or perpendicular” requirement is acceptable,

10
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but rectangular and cylindrical boxes are the easiest to use in computing
the surface areas and volumes that enter into Gauss’s law.

4c. The Electric Field. Applying Gauss’s law to a flat infinite sheet
with uniform surface charge density σ, we find that the magnitude of the
electric field is everywhere the same:

E = 2πkeσ . (11)

The direction of the field is normal to the sheet of charge, directed away
from the sheet for a positive charge density and toward the sheet for a
negative charge density. If the area of one end of the box-like Gaussian
surface is A, then the charge enclosed by the surface is:

qS = σ A . (12)

The component of the electric field normal to the side of the Gaussian
surface is zero on the four sides that cut through the plane and equal to
the electric field on the other two sides:

∮

~E · n̂ dS = 2E A . (13)

Using Gauss’s law to combine Eqs. (12) and (13) we obtain Eq. (11), the
solution. Of course in a real problem the constancy of the electric field
is restricted to regions where the distance to the sheet of charge is much
smaller than the distance to the sheet’s nearest edge.

5. Two Parallel Sheets of Charge

5a. Unequal Surface Charge Densities. Gauss’s law can be easily
applied to the case of two infinite parallel sheets having uniform surface
charge densities σ and σ′, respectively. To obtain the electric field at
some particular point, apply Gauss’s law to each of the sheets separately
and then add the fields from the two sheets vectorially. Note that the
two Gaussian surfaces have one side in common. You should obtain the
answers: Help: [S-3]

E = 2πke(σ + σ′), (outside the planes) . (14)

E = 2πke(σ − σ′), (between the planes) . (15)

Note that these equations become particularly simple when σ and σ′ are
equal. Note also that this problem has no symmetry plane so a single
preferred Gaussian surface could not be drawn: the two rules for con-
structing such a surface could not be satisfied with only our usual prior
knowledge of the field.
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5b. Equal Surface Charge Densities. For two infinite parallel
sheets of charge with identical surface charge densities, σ, we can ap-
ply Gauss’s law using a single Gaussian surface. There is a plane of
symmetry that is parallel to the two sheets and half way between them,
so the Gaussian surface must be symmetrical with respect to that plane
of symmetry. In practical terms, the symmetry plane must cut the box-
like surface into two identical box-like surfaces. Note how this symmetry
of the Gaussian surface with respect to the problem’s symmetry plane
ensures that the two rules for constructing the preferred surface can be
satisfied. Help: [S-2] If one end of the surface has area A, the charge
enclosed by the surface is:

qS = 2σ A . (16)

Then Gauss’s law produces:

E = 4πkeσ, (outside the sheets), (17)

and
E = 0, (between the sheets).

These two equations agree with Eqs. (14) and (15).

Acknowledgments

I would like to thank Professor J. Linnemann for a valuable sugges-
tion. Preparation of this module was supported in part by the Na-
tional Science Foundation, Division of Science Education Development
and Research, through Grant #SED 74-20088 to Michigan State Univer-
sity.

Glossary

• coaxial cable: an electrical cable consisting of two metallic concentric
cylinders separated by some kind of insulator. The electric field is zero
both inside the inner cylinder and outside the outer cylinder.

• cylinder of charge: a charge distribution with cylindrical symmetry.
For a cylinder of charge with constant density extending to infinity, the
associated electric field falls off as (1/r) outside the surface (r is the
radius from the axis of the cylinder).

• line of charge: a charge distribution along a straight line. This is a
special case of cylinder of charge.

12
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• linear charge density: the charge per unit length along a line.

• sheet of charge: a charge distribution in a plane. For a plane of
charge with constant density extending to infinity in all directions, the
associated electric field is everywhere constant and normal to the plane.
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PROBLEM SUPPLEMENT

Note: Problems 7 and 8 also occur in this module’s Model Exam.

1. Two parallel lines of charge, shown coming out of the page in the
sketch, are a distance 2.0d apart. If both are positively charged, find
the electric field as a function of y at points along the perpendic-
ular bisector of the line connecting the two [find ~E(y) for x = 0].

l l
d d

+ +
x

y

2. An infinitely long cylinder of charge has a radius
R and a volume charge density ρ. Find the elec-
tric field in the regions r < R and r > R and
show that both lead to the same result at r = R.
Help: [S-9]
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+
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+

+
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+

+

+

+
+

+
+

+

+

+

+

+

+
+

+
+

+

+
+

+
+

R

3. Find the electric field inside and outside a hollow
cylinder of charge whose radius is R, and whose
linear charge density is λ.

l

R
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4. A cylinder of charge has volume charge density
ρ and radius R1. Outside it and concentric with
it is a cylindrical surface of charge with radius
R2. The charge on this outer surface has a linear
charge density λ. Find the electric field in each of
the three regions defined by the cylinder surfaces
at R1 and R2. Show that the result in Problem 3
can be obtained from the results in this Problem
by letting R1 = 0, R2 = R.

l

R2

R1

r

5. Find the electric field in the four regions defined by the three infinite
planes (sheets) of charge in the sketch.

x̂

ŷ

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

_

_

_

_

_

_

_

_

I II III IV

-ssss ss

6. An infinite slab of charge of thickness d has a uniform charge density
ρ, as shown below in cross section in the sketch. Use Gauss’s law
to find the electric field inside and outside the slab. Help: [S-4]

x

y

d
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7. Use Gauss’s law to find the electric field out-
side and inside two large parallel plates with
equal surface charge densities σ on the plates
and with volume charge density ρ between the
plates. The distance between the plates is d.
Help: [S-11] x̂

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

8. Use Gauss’s law to find the electric field in each of the three
regions defined by two coaxial cylindrical surfaces, each with
linear charge density λ, and with a uniform volume charge den-
sity ρ inside the inner cylindrical surface. The radii of the
two cylindrical surfaces are R1 and R2 (see diagram below).

R2

R1

volume charge
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Brief Answers:

1. Ex = 0

Ey = 4ke
λy

(d2 + y2)
Help: [S-10]

2. ~E(r) = 2πkeρr r̂ for r < R Help: [S-6]

~E(r) = 2πke
ρR2

r
r̂ for r > R

At the surface: ~E(R) = 2πkeρR r̂ for r = R

3. Region 1 (r < R1): ~E(r) = 2πkeρr r̂ Help: [S-7]

Region 2 (R1 < r < R2): ~E(r) = 2πke
ρR2

1

r
r̂

Region 3 (R2 < r): ~E(r) = 2ke
ρπR2

1 + λ

r
r̂

4. lim
R1→0

2πke

(

ρR2
1

r

)

= 0 ; ~E = 0 (for r < R)

lim
R1→0

(

2πke
ρR2

1

r
+ 2ke

λ

r

)

= 2ke
λ

r
; ~E(r) = 2ke

λ

r
r̂ (for r > R)

5. In the figure below, note that each row of four arrows shows the field
that would be produced by just one plane of charge alone (see the
annotations down the right side of the figure).

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

_

_

_

_

_

_

_

_

I

1 2 3

field due to 1

field due to 2

field due to 3

II III IV
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~EI = −2πkeσx̂ ; Help: [S-8]

~EII = 2πkeσx̂ ; ~EIII = −2πkeσx̂ ; ~EIV = 2πkeσx̂.

6. “Inside”: ~E = 4πkeρy ŷ ;

“Outside”: ~E = 2πkeρd ŷ

7. Outside: ~Eright = +2πke(2σ + dρ) x̂
~Eleft = −2πke(2σ + dρ) x̂

Inside: ~E = 4πkeρ x x̂, where x is measured from the symmetry plane
between the plates.

8. “Inside” region: ~E(r) = 2πkeρ r r̂

“Between” region: ~E(r) = 2ke
πR2

1ρ+ λ

r
r̂

“Outside” region: ~E(r) = 2ke
πR2

1ρ+ 2λ

r
r̂
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-3d)

∮

SI

~EI · n̂ dS = 4πkeqSI
= 0

~EI · n̂ = 0 on cyl. surf.
~EI = 0

∮

SII

~EII · n̂ dS = 4πkeqSII

= 4πkeλ`
~EII · n̂(2πr`) = 4πkeλ`

~EII = 2ke
λ

r
r̂

∮

SIII

~EIII · n̂ dS = 4πkeqSIII
= 0

~EIII · n̂ = 0 on cyl. surf.
~EIII = 0

+
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+
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+
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+
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+
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Region I

Region II
Cylindrical

Gaussian

Surface

Region III

S-2 (from TX-5b)

∮

S

~E · n̂ dS = 4πkeqS = 4πke2σA

on ends: ~E · n̂(2A) = 4πke2σA

outside the planes: ~E = 4πkeσ n̂

∮

S1

~E · n̂ dS = 4πkeqS = 0

on ends: ~E · n̂(2A) = 0

between the planes: ~E = 0

n̂
n̂

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
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S-3 (from TX-5a)

Multiply all shown values by 2πke:

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

s s s

s

s ' s ' s '

s '
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S-4 (from PS-Problem 6)

Since the slab has planar symmetry, the field direction is everywhere nor-
mal to the slab and the equi-magnitude surfaces are parallel to the slab
faces (see MISN-0-153). When you construct Gaussian surfaces, take
advantage of the reflection symmetry about the x-z plane by choosing
the two faces that are parallel to the slab to be equidistant from the
slab as well. That way you can write the surface integral of ~E as:

∮

S

~E · d~S = 2E A

since the field is uniform over the two Gaussian surface areas, and the
field must be the same on each surface by symmetry.

S-5 (from [S-10])

Draw a sketch of the situation and on it mark the given quantities. Then
figure out and mark on the sketch the θ and r we use here:
Ey(total) = Ey(from #1) + Ey(from #2)
Ey(from #1) = E(from #1) cos θ
Ey(from #2) = E(from #2) cos θ
E(from #1) = E(from #2) = 2keλ/(r)
where r = (d2 + y2)1/2, λ is the charge per unit length along each wire,
and cos θ = y/r.
Ey(total) = 4keλy/(r

2) = 4keλy/(d
2 + y2)
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S-6 (from PS-Problem 2)

“Charge volume density” is “charge per unit volume” and in the MKS
system is measured in C/m3.
Then: total charge = charge volume density × volume,
where all three quantities refer to “inside the surface.”

S-7 (from PS-Problem 4)

Completely solve Problems 1 and 2 first.

“Linear charge density” is “charge per unit length” and in the MKS
system is measured in C/m.
It is the amount of charge per unit length down the entire cylindrical
surface.

S-8 (from PS-Problem 5)

Use Gauss’s Law separately on each plane (as though the other did not

exist) to get: ~EI (due to #1), ~EI (due to #2), and ~EI (due to #3).

Then add them to get ~E in region I, here labeled ~EI .

S-9 (from PS-problem 2)

The concept that has caused students trouble in the past (in Problem 2)
is directly and clearly handled in this module’s text. Read and under-
stand it there.

S-10 (from PS-problem 1)

First, try your very best to solve this problem without Special As-
sistance. Go back and work through the text again, this time paying
special attention to sections relevant to this problem. Remember that
you will not have the Special Assistance available at exam time so you
need to learn how to work without it.

If you try and try and truly fail, then try the Special Assistance in [S-5].

S-11 (from PS-problem 7)

Calculating the enclosed charge involves techniques you used in the two
previous problems.
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MODEL EXAM

1. See Output Skill K1 in this module’s ID Sheet.

2. Use Gauss’s law to find the electric field out-
side and inside two large parallel plates with
equal surface charge densities σ on the plates
and with volume charge density ρ between the
plates. The distance between the plates is d.

x̂

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

3. Use Gauss’s law to find the electric field in each of the three
regions defined by two coaxial cylindrical surfaces, each with
linear charge density λ, and with a uniform volume charge
density ρ inside the inner cylindrical surface. The radii of
the two cylindrical surfaces are R1 and R2 (see diagram
below).

R2

R1

volume charge

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, Problem 7.

3. See this module’s Problem Supplement, Problem 8.

22



23 24


