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GAUSS’S LAW FOR SPHERICAL SYMMETRY

by

Peter Signell

1. Introduction

1a. The Importance of Gauss’s Law. Gauss’s law is generally
thought of as being the integral form of one of the four great laws of
electricity and magnetism. Gauss’s law has exactly the same content as
Coulomb’s law, but, while Coulomb’s law is formulated in terms of point
charges, Gauss’s law is formulated in terms of continuous charge distri-
butions. Although either of these laws can be derived from the other, it
is easier to derive Coulomb’s law from Gauss’s law than the other way
around, and that makes us think of Gauss’s law as the more basic form.
Furthermore, it is easy to transform Gauss’s law from its usual integral
form to a differential form which is also widely used. In that form it is
known as one of the four differential “Maxwell’s equations” that govern
all of electricity and magnetism.1

1b. Usefulness of the Law. Gauss’s law is generally the option of
choice for finding the electric field at various space points when the charges
producing the electric field are symmetrically distributed. This situation
often occurs in the design of new electronic components.

Even when the charges are not symmetrically distributed, Gauss’s
law can still be used to give a rough estimate for design exploration or for
checking the result from a computer program.

For an example of the use of Gauss’s law, look at the cross-sectional
view of a coaxial cable shown in Fig. 1. Here the charge distributions
have cylindrical symmetry. Using Gauss’s law we can easily determine
the electric field at any point inside or outside this cable, then use that
knowledge to determine the way the cable affects signals that pass down
it. By varying the cable parameters we can quickly optimize the design.2

For a wildly different example, Gauss’s law provides a quick and exact
proof of an important derivation in gravitation, a derivation that eluded

1See “The Ampere-Maxwell Equation; The Displacement Current” (MISN-0-145)
and “Maxwell’s Equations” (MISN-0-146).

2The coaxial cable is treated in greater detail in “Gauss’s Law Applied to Cylindrical
and Planar Charge Distributions” (MISN-0-133).
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Figure 1. Cross section of a coaxial cable,
showing the charges at some instant.

Newton for nearly 20 years.3

2. Gauss’s Law

2a. Introduction. Our approach to Gauss’s law will be to: (1) develop
some ideas about the Gaussian surface that occurs in the law; (2) review
the rules for finding the component of the electric field that is normal
to the Gaussian surface, since this is what occurs in the law; (3) give a
precise statement of the law; and then (4) give precise rules for choosing
the Gaussian surface.

2b. Gaussian Surfaces. Before we proceed to the statement of
Gauss’s law, we introduce some notions about the Gaussian surface oc-
curring in the mathematical statement of the law; further study of the
law will then convert those notions into precise statements.

The surface that occurs in Gauss’s law, called a Gaussian surface, is
a closed imaginary surface that passes through the space point at which
we want to know the electric field and which has a shape determined
by the symmetry of the charge distribution. In all of the examples we
will be dealing with, at least part of the Gaussian Surface will be the
Electric Field Equi-Magnitude Surface (EMS) that goes through the point
at which we wish to know the field.4 The only difference is that additional
surface areas must be added to the EMS, if necessary, in order to make
it into a closed surface (one that totally encloses some volume). Here are
typical Gaussian surfaces: (1) a sphere (see Fig. 2); (2) a cylinder with flat

3See “The Gravitational Field Outside a Homogeneous Spherical Mass” (MISN-0-
109).

4For the necessary discussion of Equi-Magnitude Surfaces, see “Electric Fields From
Symmetric Charge Distributions” (MISN-0-153).
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circular ends that are normal to the axis of the cylinder; and (3) two flat
sheets that are parallel and identical in shape, with the volume between
the parallel sheets closed by a surface normal to the planes of the sheets.

2c. Normal Component of ~E. Gauss’s law uses only the component
of the electric field that is normal (perpendicular) to the Gaussian surface.
This component is denoted En. Where the electric field is not normal to
the Gaussian surface we must find its normal component (see Fig. 3):

En = ~E · n̂ = E cos θ ,

where n̂ is the outward-directed unit vector normal to the Gaussian sur-
face at the point under consideration.

2d. Statement of Gauss’s Law. Gauss’s law states that the integral
of the normal component of the electric field over any closed surface is
proportional to the net charge contained inside that surface. Thus Gauss’s
law contains the following quantities:

1.
∮

S
En dS ≡ the integral of the normal component of the electric

field, En, over any closed surface “S”;5 and

5The circle on the integral sign reminds you that the surface must be a closed one,
meaning that it must completely enclose some region of space. When you actually use
Gauss’s law, the suface integrals will reduce to just a constant times the surface areas
of spheres, cylinders, or rectangles.
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Figure 5. The Gaussian
surface (G.S.) for apply-
ing Gauss’s law to a spher-
ically symmetric charge
distribution that extends
to radius R.

2. qS ≡ the total (net) electric charge contained within that same
surface S.

The mathematical statement of Gauss’s law is:
∮

S

En dS = 4πke qS . (1)

This law holds for any surface whatever, even one as wild as that shown
in Fig. 4.

2e. Choosing the Gaussian Surface . There are two rules for con-
structing a useful Gaussian surface:

1. the surface must pass through the point at which you wish to know
a particular component of the electric field, and the surface must be
normal to that component at the point in question;

2. the surface must be a completely closed one and, at every point on
the surface, the normal component of the electric field should either
have the same value as at the point in question or be zero.

Using the above two rules, the electric field due to a symmetric charge
distribution can generally be determined in a few lines in a few seconds.

8
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Advice: People learning Gauss’s law for the first time often use a proper
imaginary Gaussian Surface on the left side of Eq. (1) but then incorrectly
compute the charge within a real surface, different from the Gaussian
Surface, for the right side of that equation. You must compute the charge
within the imaginary Gaussian Surface for the right side of the equation,
and it must be the same Gaussian Surface you used to evaluate the left
side of the equation.

3. Spherically Symmetric Charge

For charge distributions having spherical symmetry, we choose our
Gaussian surface to be a sphere of radius r centered on the center of
the charge distribution (see Fig. 5). Then ~E is always normal to the

surface: En = ±| ~E|, the sign depending on whether the electric field
points outward or inward. Also, because the charge distribution looks the
same from any point on the spherical Gaussian surface, the magnitude of
E is constant over that surface. That is, En can be a function of radius
but it will not be a function of position for fixed radius: En = E(r).
This constancy over a spherical surface S enables us to easily perform the
integration:

∮

S

En dS = E(r)

∮

S

dS = E(r) 4πr2 .

Then by Gauss’s law, Eq. (1), the electric field is:

4πr2E(r) = 4πkeqS(r) , (spherical symmetry) , (2)

where qS(r) is the net amount of charge inside the spherical surface of
radius r.

4. A Point Charge: Coulomb’s Law

The application of Gauss’s law to the case of a single point charge at
the origin of some coordinate system produces the electric field appropri-
ate to Coulomb’s law. The single point charge is an especially simple case
because any spherical surface centered on the charge will enclose all of the
charge. Writing the value of the point charge as Q, Eq. (2) immediately
becomes:

E(r) = ke

Q

r2
.

9
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Inserting the radial direction of the field gives us:

~E(r) = ke

Q

r2
r̂ . Help: [S-1] . (3)

If we now place a charge q at the space-point ~r, it experiences a force
~F = q ~E(r) due to the charge Q at the origin. Using Eq. (3), we obtain an
expression for the force between the two charges:

~F = ke

qQ

r2
r̂ ,

which is Coulomb’s law.

5. A Sphere of Uniform Charge

5a. Overview. Given a sphere with electric charge distributed uni-
formly throughout its volume, we can use Gauss’s law to easily find the
electric field at any point outside or even inside the sphere. All we need
do is evaluate the net amount of charge inside the Gaussian surface at the
radius of the point, then insert that charge into Eq. (2).

In the next two sections we will determine the electric field inside
and outside a sphere of charge, but first we will give a quick qualitative
run-through. Imagine starting with a very small Gaussian surface, one
with radius r ¿ R where R is the radius of the sphere of charge. If we
then increase r, the amount of charge enclosed by the Gaussian surface
at r will increase like r3 until R is reached. As r increases beyond R, the
amount of charge enclosed by the surface will stay constant since we are
now outside the sphere. However, the Gaussian surface’s area [in the left
side of Eq. (2)] will continually increase like r2. Combining these radial
dependencies, we find that the electric field should increase linearly with
radius inside R and decrease as the inverse square of the radius outside
R (see Fig. 6).

5b. Field Inside the Charge Distribution. We will here use
Gauss’s law to compute the electric field at a radius r that is less than
the radius R of the surface of a sphere of uniformly distributed charge
totaling Q (see Fig. 5). Since the charge distribution is spherically sym-
metric we can immediately pass from Eq. (1) to Eq. (2). For our case,
the charge enclosed by the imaginary integration surface of radius r is:
qS = Q (r/R)3 ( Help: [S-6]). Then Eq. (2) becomes:

4πr2E(r) = 4πkeqS = 4πkeQr3/R3 (for r ≤ R) .

10
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ing Gauss’s law outside a
spherical charge distribu-
tion.

Since E’s direction is radial,

~E(r) = ke

Qr

R3
r̂ (for r ≤ R) .

This says that the field is zero at the center and increases linearly as we
go out toward the edge (see Fig. 6).

5c. Field Outside the Distribution. In the region beyond a spheri-
cally symmetric distribution of charge, any integration surface (see Fig. 7)
encloses the entire charge and thus Eq. (2) reduces to Coulomb’s law. If
the total charge is Q, then the charge enclosed by the surface in Eq. (2)
is qS = Q (for r ≥ R). Then putting in the direction gives us:

~E(r) = ke

Q

r2
r̂ (for r ≥ R) .

This field is identical to the one that would be produced by a point charge
Q located at the center of our spherical charge distribution (see Fig. 6).
Note also that the expressions for the field inside and outside the sphere
give the same answer at the surface of the charge sphere (r = R). They’d
better!
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Glossary

• Gauss’s law: a statement that the integral of the normal component
of the electric field over any closed surface is a known constant times
the net charge inside that surface. The law is the integral form of one
of Maxwell’s equations.

• Gaussian surface: a surface enclosing a charge distribution, chosen
so that: (1) the surface passes through the point at which you wish
to know a particular component of the electric field, and the surface is
normal to that component at the point in question; and (2) the surface
is a completely closed one and, at every point on the surface, the normal
component of the electric field either has the same value as at the point
in question or is zero.

• integration surface: a surface over which some function is inte-
grated.

• surface integral: the integral of some function over a surface S,
written: I =

∫

S
F (~r) dS, or I =

∫

S
~F (~r) · d~S, depending on the phe-

nomenon being described. If the surface is bounded by a line L, then
the integral can be written I =

∫

SL
~F (~r) d~S where

∫

SL
should be read

as “the integral over the surface S that is bounded by the line L.” The
function ~F (~r) varies according to where one is on the surface S. The

infinitesimal element of area d~S has a direction defined as the local
normal to the surface: d~S = n̂dS.

• closed-surface integral: the integral of some function over a closed
surface S, called the integration surface; written as I =

∮

S
F (~r) dS,

where the circle on the integral sign denotes a closed surface, F (~r) is
some function of coordinate space, and dS is an infinitesimal element
of area on the surface S.

• volume charge density: the amount of charge per unit volume,
usually expressed in coulombs per cubic meter.

12
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PROBLEM SUPPLEMENT

Note: Problems 3, 4, and 5 also occur in this module’s Model Exam.

ke = 8.99× 109 Nm2 C−2

1. Determine the electric field for a constant charge density throughout
a spherical volume of radius R, as shown. Evaluate ~E at:

a. r = 2.00 cm

b. r = 4.00 cm

R

where R = 3.00 cm and the volume charge density is 2.00×10−6 C/m3.
Help: [S-7]

2. Given a hollow spherical shell of charge:

Region III: 0 < r < R1: no charge;

Region II: R1 < r < R2: uniform charge distribution, total charge Q;

Region I: R2 < r <∞: no charge.

a. Draw a cross sectional view, labeling radii and regions.

b. Determine ~E in Region I Help: [S-3] , Region II Help: [S-5] and
Region III Help: [S-2] in terms of the given quantities.

c. Check that ~EI , ~EII , and ~EIII agree at their common boundaries.
Help: [S-4]

d. Sketch E(r) for this case and for R1 → 0.

13
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3. Given a spherical shell that has a constant charge density within the
shell (between the two surfaces of the shell). Assume there are no
charges inside the inner surface of the shell or outside its outer surface.
Use Gauss’s law to determine the electric field inside, outside, and
within the spherical shell. Give your answers in terms of the shell’s
total charge Q, inner radius a, outer radius b, and the radius r at which
the electric field is to be evaluated.

4. At a distance of 2.00m from the surface of a sphere of charge, what
force would each of these particles feel if it was at rest with respect to
the sphere?

a. an electron

b. a neutron (zero charge)

The sphere’s charge density is −16C/m3 and the radius of the sphere
is 5.00 cm.

5. What is the ratio of the magnitude of the gravitational force to the
magnitude of the electrostatic force on an electron due to a solid sphere
with a volume charge density of 8.0×102 C/m3 and a radius of 2.0 cm?
The distance between the electron and the center of the sphere is 2.0m.
(Take the gravitational force as F = 1.52× 10−41 N.)

14
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Brief Answers:

1. a. E = 1.51× 103 N/C Help: [S-8]

b. E = 1.27× 103 N/C Help: [S-9]

2. a.
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b. ~EI = keQr̂/r2;

~EII = keQ r̂
(

r3 −R3
1

)

/
[

r2
(

R3
2 −R3

1

)]

;

~EIII = 0.

c. ~EIII(R1) = ~EII(R1) = 0;

~EII(R2) = ~EI(R2) = keQr̂/R2
2 .

d.

E E

R2 R2R1 r r
0 0

3. Outside: ~E = ke

Q

r2
r̂

Within: ~E = ke

Q (r3 − a3)

r2 (b3 − a3)
r̂

Inside: ~E = 0

4. a. F = 2.8× 10−12 N, away from the sphere.

(The answer is NOT 2.8× 10−15 N.)

b. ~F = 0

15
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5. FG/FE = 1.57× 10−30

(The answer is NOT 1.57× 10−27.)

16
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-4, TX-5c)

The definition of r̂ is: r̂ = ~r/r. Then ~r = rr̂ and both ~r and r have the
dimensions of length.

S-2 (from PS-problem 2b)

+

+

+

+
+ +

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+
+

+

+
+

I

III

II

G.S.

R1

r R2

Examine the sketch and notice that there is no charge in Region III
(r ≤ R1). Gauss’s law refers only to the charge contained inside the
integration surface. If we pick a spherical Gaussian surface in Region
III, so its radius is r ≤ R1, it will contain no charge and Gauss’s law
leads to this form for Eq. (2):

4πr2EIII(r) = 0.

We can immediately conclude that EIII(r) = 0.

17

MISN-0-132 AS-2

S-3 (from PS-problem 2b)

G.S.

R1
r

R2

Outside the sphere, in Region I (r ≥ R2), our Gaussian surface encloses
the entire sphere (see sketch) and so Gauss’s law leads to this form for
Eq. (2):

4πr2EI(r) = 4πkeqS = 4πkeQ ,

where Q is the total charge of the hollow sphere. Then:

EI(r) = ke

Q

r2
.

Putting in the radial direction of the field, ~EI(r) = ke

Q

r2
r̂.

18
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S-4 (from PS-problem 2c)

Simply evaluate ~EI(R2) and ~EII(R2) and show that they are the same.

Then evaluate ~EII(R1) and ~EIII(R1) and show that they are the same
(see the Brief Answers).

S-5 (from PS-problem 2b)

We first define the relationship between volume charge density ρ and
total charge Q for the hollow sphere, then assume ρ is constant:

Q =
∫

ρ dV =
∫ R2

R1
ρ4πr2 dr = ρ(4/3)π(R3

2 −R3
1)

so

ρ =
Q

(4/3)π(R3
2
−R3

1
)
.

Now a spherical Gaussian surface of radius r inside region II, where
R1 ≤ r ≤ R2, will enclose a net amount of charge:
qS =

∫ r

R1
ρ4πr′2 dr′ = ρ(4/3)π(r3 −R3

1),

=
Q

(4/3)π(R3
2
−R3

1
)
× (4/3)π(r3 −R3

1) = Q
r3 −R3

1

R3
2
−R3

1

.

So Eq. (2) gives us:

4πr2EII(r) = 4πkeqS = 4πkeQ
r3 −R3

1

R3
2
−R3

1

,

or

EII(r) = ke

Q(r3 −R3
1)

r2(R3
2
−R3

1
)
.

Putting in the radial direction of the field, EII(r) = ke

Q(r3 −R3
1)

r2(R3
2
−R3

1
)
r̂ .

S-6 (from TX-5b)

qS =
Vr

VR

Q =
(4/3)πr3

(4/3)πR3
Q

or

qS =
∫ r

0
ρ4πr′2 dr′ = ρ(4/3)πr3 =

Q

(4/3)πR3
(4/3)πr3

19
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S-7 (from PS-problem 1)

The volume charge density for a uniformly distributed charge is ρ =
Q/V, where Q is the total charge and V is the volume over which it
is distributed. If the distribution is spherical with radius R, then V =
4πR3/3.

S-8 (from PS-problem 1a)

E =
(8.99× 109 Nm2 C−2)(2.00× 10−6 Cm−3)(4π)(0.02m)

3

= 1.51× 103 N/C

S-9 (from PS-problem 1b)

E =
(8.99× 109 Nm2 C−2)(2.00× 10−6 Cm−3)(4π)(0.03m)3

3(0.04m)2

= 1.27× 103 N/C

20
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MODEL EXAM

ke = 8.99× 109 Nm2 C−2

electron charge = −1.60× 10−19 C

1. See Exam Skills K1-K4 in this module’s ID Sheet.

2. Use Gauss’s law to determine the electric field inside, outside, and
within a spherical shell of constant charge density. Give your answers
in terms of the shell’s total charge Q, inner radius a, outer radius b,
and the radius r at which the electric field is to be evaluated.

3. At a distance of 2.00m from the surface of a sphere of charge, what
force would each of these particles feel if it was at rest with respect to
the sphere?

a. an electron

b. a neutron (zero charge)

The sphere’s charge density is −16C/m3 and the radius of the sphere
is 5.00 cm.

4. What is the ratio of the magnitude of the gravitational force to the
magnitude of the electrostatic force on an electron due to a solid sphere
with a volume charge density of 8.0×102 C/m3 and a radius of 2.0 cm?
The distance between the electron and the center of the sphere is 2.0m.
(Take the gravitational force as F = 1.52× 10−41 N.)

Brief Answers:

1. See this module’s text.

2. See Problem 3 in this module’s Problem Supplement.

3. See Problem 4 in this module’s Problem Supplement.

4. See Problem 5 in this module’s Problem Supplement.
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