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1. Use the Taylor series to expand a function about a point (MISN-
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K1. Derive the recurrence relation for the Numerov Algorithm, to sec-
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netic field. Show all steps in the derivation.
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the Numerov Algorithm and communicate a method of obtaining
a particular desired accuracy.
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1. “Trajectory of a Charged Particle in a Magnetic Field: Cyclotron
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1. Introduction and Description

Many problems in science and engineering can not be solved in terms
of known functions, even when the under lying equation is known. Such a
problem is the trajectory of a charged particle in a non-uniform magnetic
field. For such cases one must resort to general numerical techniques: one
of the most common is examined in this module.

2. Study Material

The force on a charged particle in a magnetic field is the Lorentz
force:

~F = q~v × ~B (1)

where q is the charge of the particle, ~v is its velocity, and ~B is the value
of the magnetic field at the present location of the particle. The present
force on the particle is ~F . The force influences the particle’s trajectory
through Newton’s Second Law:

~F = m~a (2)

where m is the particle’s mass.

In our case ~B will always be at right angles to ~v, as is obvious from
Eq. (1), hence ~v can change ~B’s direction but not its magnitude. We will
restrict ourselves to motion in the x-y plane by putting ~v there initially
and putting ~B in the z-direction:

~B = B(x, y)ẑ

~v = x′x̂+ y′ŷ (3)

where a prime denotes derivative with respect to time: x′ ≡ dx/dt.
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Figure 1. A function x(t), specified at equally spaced values
of t.

Equating the forces in Eqs. (1) and (2) and taking components (you
do it) we get:

mx′′ = qy′B

my′′ = −qx′B

mz′′ = 0

(4)

Forget the third (z) equation since its solution does not couple to those of
the x- and y-equations. Note that the x- and y-equations are “coupled”, in
that x′′ involves y′ and y′′ involves x′. If we define a(x, y) ≡ (q/m)B(x, y)
then Eqs. (4) can be written:

x′′ = ay′

y′′ = −ax′

or, equivalently,

v′

x(t) = a(t)vy(t); v
′

y(t) = −a(t)vx(t) . (5)

In the Numerov method we deal with the solution functions x(t), y(t),
vx(t), and vy(t), as a series of numbers at “net-point” times that are
integrally spaced:

tn = n∆ .

This is illustrated in Fig. 1 for x(t).

We then write:
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xn ≡ x(tn) ≡ x(n∆)

yn ≡ y(tn) ≡ y(n∆)

vx,n ≡ vx(tn) ≡ vx(n∆)

vy,n ≡ vy(tn) ≡ vy(n∆)

and our Eqs. (3) and (5) become:

x′

n = vx,n

y′

n = vy,n

v′

x,n = anvy,n

v′

y,n = −anvx,n .

(6)

These are four coupled equations.

We now connect the consecutive values of the x’s and v’s by making
Taylor’s Series expansions of each of them. For example:

x(t+∆) = x(t) + ∆x′(t) +
∆2

2!
x′′(t) + . . .

We will choose a sufficiently small so that terms beyond the second
will be negligible compared to the first two terms. Then in our net-point
notation and using Eq. (6):

xn+1 = xn +∆vx,n

vx,n+1 = vx,n +∆anvy,n

(7)

¤ You derive the equations for yn+1 and vy,n+1.

Given the t = 0 position and velocity components,

x0; y0; vx,0; vy,0

we can use the four “recurrence” relations (7) to generate the four position
and velocity components at time t = ∆:

x1; y1; vx,1; vy,1 .

Putting the latter back into the right hand side of the recurrence relations,
we get the values at time t = 2∆. Continuing this process, we can find
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the trajectory as far into the future as we wish. We must only be careful
to put the correct value of ~B into a at each space-point (xn,yn).

Finally, how does one know what size time interval ∆ to use? One
could attempt to assess the importance of successive terms in the Taylor’s
Series, but a more reliable method is to decrease ∆ until the predicted
trajectory stabilizes; that is, until it does not change significantly when ∆
is made even smaller. However, one must be aware that if ∆ is continually
made even smaller, a point will be reached where the errors will start
increasing due to the computer’s finite-word-size limit.

The algorithm, then, consists of:

1. recurrence relations

2. method of assuring desired accuracy

3. insertion of initial conditions.
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