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Input Skills:

1. Calculate the force on a straight segment of current-carrying wire
in a magnetic field, given I, ~B, and the length of the segment of
wire (MISN-0-123).

2. State the relationship between the electric and magnetic fields set
up by a moving point charge (MISN-0-124).

3. Derive the relationship Q~v = I~̀ between total charge Q in length
~̀, moving with velocity ~v, and constituting current I (MISN-0-
123).

Output Skills (Knowledge):

K1. Vocabulary: Ampere-Laplace-Biot-Savart law.

K2. Start from the Ampere-Laplace-Biot-Savart law and obtain the
equation for the magnetic field due to a point particle.

K3. Start from the Ampere-Laplace-Biot-Savart law and derive the
equation for the magnetic field on the axis of a loop of current.

K4. Outline how one determines the magnetic field near a long straight
wire using the Ampere-Laplace-Biot-Savart law.

Output Skills (Rule Application):

R1. Given the dimensions and current in a circular loop of current,
determine the magnetic field at its center.

R2. Given the currents in two parallel wires, and the distance between
the wires, calculate the force per unit length between the wires.

Post-Options:

1. “Magnetic Dipoles” (MISN-0-130).

2. “Ampere’s Law” (MISN-0-138).
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THE AMPERE - LAPLACE -

BIOT - SAVART LAW

by

Orilla McHarris and Peter Signell

1. Introduction

In calculating the magnetic fields due to electric currents, it is some-
times easier to use Ampere’s law and sometimes easier to use the Ampere-
Laplace-Biot-Savart1 law (hereafter called the ALBS law for short). For
example, the magnetic field of a very long straight current is more eas-
ily obtained using Ampere’s law, whereas the magnetic field of a loop
of current is more easily found using the ALBS law. For cases in which
the current does not follow a geometrically simple path, the ALBS law
is the only feasible approach. The two laws both originate in Maxwell’s
Equations, but while Ampere’s law is itself part of one Maxwell equation,
the derivation of the ALBS law incorporates both Ampere’s law and a
second Maxwell equation. The magnetic field of a moving point charge is
a special case of the ALBS law.2

In this module we will use the ALBS law to solve the case of a point
charge, a loop of current, and a long straight wire, and then we will discuss
the sign of the forces between adjacent current-carrying wires.

2. The Ampere-Laplace-Biot-Savart Law

The ALBS law for the magnetic field ~B due to a current I is:

~B = km I

∫

T̂ × r̂

r2
d` . (1)

where km is the magnetic force constant, d` is an element of length along
the path taken by the current, T̂ is a unit vector tangent to the path at
the element d`, and ~r is the position vector of the point at which ~B is
being determined, as seen from the current element d`. Some of these
relationships are illustrated in Fig. 1.

1Pronunciations: lä-pläss′, bee-oh′, sav-ar′.
2See “The Magnetic Field of a Moving Charge: Magnetic Interactions” (MISN-0-

124).
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Figure 1. An infinitesimal segment of a
current I of length d` and with tangent
T̂ , and a point P at which we wish to
know ~B.

3. Solutions

3a. Overview. Equation (1) can be solved for the magnetic field at
any space-point due to a current of any shape. In principle one need only
integrate along the path followed by the charges in the current, putting
in the appropriate values for the quantities in the integrand at each point
on the path. For some currents having simple geometrical shapes the
integral can be performed formally, and we shall examine several such
cases in this module. For other cases, however, one must approximate the
path of the current by tiny segments and sum the integrand over these
segments using a computer.

3b. Obtaining the Point-Charge Equation. The idea here is to
start with Eq. (1) and obtain the magnetic field due to a point charge q
moving with velocity v.3 To do this we must make an element of cur-
rent I, of length d` and direction T̂ , describe a point charge q moving
with velocity v. This can be done more elegantly using the Dirac delta
function.4 Here we assume that the particle’s charge q is concentrated in
such a small length ` that ~r does not change appreciably as one goes from
one end of ` to the other. Since there is no current outside `, which is
the width of the charged particle, the integrand is zero everywhere except
over `. Then we can trivially integrate the essentially-constant integrand

3See “The Magnetic Field of a Moving Charge: Magnetic Interactions” (MISN-0-
124).

4If interested, see “The Dirac Delta Function,” MISN-0-380. If you are not familiar
with this function, it may require a significant amount of studying before you feel
comfortable with it.
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Figure 2. The magnetic field at the center
of a circular loop of current.

over the length ` and get:

~B = km I
T̂ × r̂

r2
` .

Now we already know, for a point charge q of length ` and velocity v, that
IT̂ is given by:5

Q~v = ` I T̂ (2)

so we finally have the familiar equation for the magnetic field due to a
moving point charge:

~B = km
q ~v × r̂

r2
. (3)

3c. A Circular Loop of Current. We here calculate the magnetic
field at the center of a circular loop of current lying in the x-z plane. First,
notice that T̂ and r̂ in Eq. (1) are always perpendicular and T̂ × r̂ = ŷ.
The distance r is just the radius of the circle and the path of integration
is the circumference of the circle (see Fig. 2):

~B = kmI

∫

ŷ

R2
d` = kmI

(

1

R2

)

(2πR)ŷ = 2πkm
I

R
ŷ . (4)

Note that for this case, with the current traveling counterclockwise as
seen from above, the field is in the positive y-direction at the origin. If
the current had been clockwise, the direction of T̂ and hence of B̂ would
have been reversed.

3d. A Long Straight Current-Carrying Wire. Now we calculate
the magnetic field near a long straight current-carrying wire located along
the y-axis with current moving in the positive y-direction. First, notice

5See “Force on a Current in a Magnetic Field” (MISN-0-123).
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Figure 3. Calculating
the magnetic field near
a long straight current-
carrying wire.
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Figure 4. The magnetic
field of Fig. 3 is tangential to
an imaginary circle around
the current.

that T̂ × r̂ and r are not constant here as they were in the case of a circle.
That means they must be written in terms of the variable of integration
before they can be integrated. Since the integral extends the length of
the y-axis, as it is drawn in Fig. 3, let us write all of the variables in terms
of y for a point P that is in the plane of the page and to the right of the
wire.

d` = dy , (5)

T̂ × r̂ = −ẑ sin θ = −ẑ R(R2 + y2)−1/2 , (6)

and
r = (R2 + y2)1/2 . (7)

Then

~B = −ẑ km I R

∫ +∞

−∞

(

R2 + y2
)

−3/2
dy . (8)

We can look up this integral in a Table of Integrals and get

~B = −ẑkmIR
y

R2

(

R2 + y2
)

−1/2
∣

∣

∣

+∞

−∞

,

= −ẑkmIR

(

2

R2

)

= 2km
I

R
(−ẑ) . Help: [S-1]

(9)

The result, displayed in Fig. 4, is obtained more easily using Ampere’s
law.
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Figure 5. Two long parallel current-
carrying wires.

4. Two Parallel Wires

From particle equations we were able to determine the direction of
the force between two parallel current-carrying wires6 but now, with the
integrated forms, we can actually calculate the force. To make the equa-
tion easy to solve, we here assume that at least one of the wires is relatively
long so that the magnetic field due to the ends is small compared to the
magnetic field due to the long straight part. We know that the magnetic
field due to a long straight wire along the y-axis, as shown in Fig. 5, is:

~B = −2km
I

R
ẑ , (10)

and we know that the force on a current-carrying wire in a magnetic
field7 is ~FB = I~̀× ~B. If we take I1 as the source of the magnetic field and
calculate the force on a wire carrying a current I2 in the same direction
as I1 we have

~F2,1 = −I2~̀× 2km
I1ẑ

R
= −x̂2km

I1I2`

R
(11)

where the direction −x̂ indicates the force is attractive. Often both wires
are relatively long; in that case the quantity of interest is the force per
unit of each wire on the other:

F/` = 2km
I1I2
R

where the force is attractive if I2 is in the same direction as I1, repulsive
if I2 is in the opposite direction from I1.

6See “The Magnetic Field of a Moving Charge: Magnetic Interactions” (MISN-0-
124).

7See “Force on a Current in a Magnetic Field” (MISN-0-123).
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Glossary

• Ampere-Laplace-Biot-Savart law: an integral formula that en-
ables one to calculate the magnetic field at any space-point due to an
electric current of any shape. Except for a few simple shapes for cur-
rents, however, a computer must be used to evaluate the law’s integral.
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PROBLEM SUPPLEMENT

km = 10−7 Ns2 C−2

Note: Problems 6 and 7 also occur in this module’s Model Exam.

1. Calculate the magnetic field at the center of a circular current loop
that lies in the x-y plane as shown below.

I = 7.0 A

R = 3.0 cm
y

z

x

2. Two long parallel wires carry currents I1 = 0.020A and I2 = 0.040A
in opposite directions and they are separated by a distance R = 1.0×
101 cm.

a. Find the force per unit length on one wire due to the current in the
other. Help: [S-6]

b. Show whether the force is attractive or repulsive.

c. Calculate ~B at a point half-way between the two wires.

3. A long straight wire carries a current I1 and lies in the same plane as a
circular current loop as shown in the sketch. Find the magnitude and
direction of I1 such that the resultant magnetic field at the center of
the loop is zero. State I1 as positive if it is in the direction shown, as
negative if in the opposite direction.
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I1

I = 3.0 A2

R
=

5.
0

cm

10.0 cm

4. Three long parallel wires carry currents perpendicular to the plane
of the page in the directions shown below. If each of the currents is
0.50A, find the magnitude and direction of the force per unit length
acting on wire #3.

;

RR

R = 2.0 cm

#3

#1 #2

x̂

ŷ
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5. Four long parallel wires each carrying a current of 0.10A, are arranged
at the corners of a square 2.0 cm on a side as shown in cross-section
below.

2.0 cm

2.0 cm

#3

#1#2

#4

Find the magnitude of the magnetic field at the center of the square:

a. if all the currents are in the same direction (apply Fig. 4 twice).
Help: [S-4]

b. if only three are in the same direction. Help: [S-5]

c. two are in one direction, the other two are in the opposite direction
(two cases).

6.

Given a circular current loop in the x-z plane, integrate the Ampere-
Laplace-Biot-Savart integrand and use the numbers in the diagram to
find ~B at the center of the loop. Draw a diagram showing the directions
of all vectors.

7. If a relatively long wire in your amplifier carried a current of 0.030A,
what would be the magnitude of the magnetic field at a transistor
4.0mm away? What force would the wire exert on a parallel wire
3.0mm away, 3.0 cm long and carrying a current of 0.040A in the
same direction?

13
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Brief Answers:

1. ~B = −1.5× 10−4 T ẑ

2. a. F` = 1.6× 10−9 N/m

b. F2,1 = x̂2km
I1I2`

R
(force is repulsive)

I1 I2

x

y

z

c. ~B = −2.4× 10−7 T ẑ

3. I1 = 18.8A, in direction shown. Help: [S-2]

I1

I = 3.0 A2

R
=

5.
0

cm

10.0 cm

4. ~F/` = 4.3× 10−6 N/m ŷ Help: [S-3]

5. a. BTotal = 0

b. BTotal = 2.8× 10−6 T

c. case 1: BTotal = 0

case 2: BTotal = 4.0× 10−6 T

6. ~B = (2.5× 10−5 T) ŷ.
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I = 2 A

B
`

x

y

z

R = 5 cm

7. B = 1.5× 10−6 T

~F = 2.4× 10−9 N, toward the first wire.
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-3b)

To take the limits ` = +∞ and ` = −∞ in this integral, realize that
when

`À R, (R2 + `2)−1/2 ≈ (`2)−1/2 = `−1

so

lim
`→∞

`

R

(

R2 + `2
)

−1/2
=

`

R|`|
=

1

R
.

Similarly,

lim
`→−∞

`

R

(

R2 + `2
)

−1/2
=

`

R|`|
= −

1

R
.

S-2 (from PS, problem 3)

The fields due to the long straight wire and the current loop must be
equal in magnitude and opposite in direction at the center of the loop.
By applying the Ampere-Laplace-Biot-Savart law to a counterclockwise
current loop, the magnetic field at the center of the loop is out of the
page. Therefore you must decide, based on the directions involved in
evaluating T̂ × r̂ for the Ampere-Laplace-Biot-Savart law as applied to a
long, straight current-carrying wire, which direction for T̂ (the direction
of the current) will give a magnetic field into the page.
Numerical Help: [S-7]
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S-3 (from PS, problem 4)

#3

F
`

31F
`

32

F
`

resultant

2.0 cm
@3 cm

_

1.0 cm

;

q

q

The forces on wire #3 due to wire #1 and wire #2 are both repulsive
and directed as shown in the figure at right. The resultant force is the
vector sum of the two equal magnitude forces

|~F31| = |~F32|;

~Fresultant = 2F31 cos θ ŷ = 2F32 cos θ ŷ

Numerical Help: [S-8]

S-4 (from PS, problem 5a)

Take the wires in diagonal pairs. Then you should be able to easily
show that the ~B from one member of such a pair cancels the ~B from
the other member of the same pair.

S-5 (from PS, problem 5b)

See [S-4] for one pair, but be able to argue your choice for the pair to

use the technique of [S-4] on. Then use Fig. 3 to double the ~B from one
wire of the remaining pair, and be able to argue why you can do this.

S-6 (from PS, problem 2a)

(2)(10−7 N/A2)(0.02A)(0.04A)

0.1m
= 1.6× 10−9 N/m
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S-7 (from [S-2])

(10 cm/5 cm)(π)(3A) = 18.8A

S-8 (from [S-3])

F/` =
(2)(10−7 N/A2)(cos30◦)(0.5A + 0.5A)(0.5A)

2× 10−2 m
= 4.3× 10−6 N/m
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MODEL EXAM

km = 10−7 N/A2

~B = km I
∫ T̂ × r̂

r2
d` .

1. See Output Skills K1-K4 in this module’s it ID Sheet.

2.

Given a circular current loop in the x-z plane, integrate the Ampere-
Laplace-Biot-Savart integrand and use the numbers in the diagram to
find ~B at the center of the loop. Draw a diagram showing the direction
of all vectors.

3. If a relatively long wire in your amplifier carried a current of 0.030A,
what would be the magnitude of the magnetic field at a transistor
4.0mm away? What force would the wire exert on a parallel wire
3.0mm away, 3.0 cm long and carrying a current of 0.040A in the
same direction?

Brief Answers:

1. See this module’s text.

2. See Problem 6 in this module’s Problem Supplement.

3. See Problem 7 in this module’s Problem Supplement.
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