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FORCE ON A CURRENT

IN A MAGNETIC FIELD

by

Orilla McHarris

1. A Straight Current

1a. Current Consists of Moving Charges. An electric current
consists of moving charges. Thus, if a current is placed in a magnetic
field, it will be subject to a magnetic force just as single moving charges
are. The magnetic force on one charge q moving with velocity ~v in a
magnetic field ~B is:1

~FB = q~v × ~B. (1)

The magnetic force on a current is just the sum of such forces on the
current’s component charges. Assuming these charges all travel with the
same velocity:

~FTotal = q1~v × ~B + q2~v × ~B + . . .+ qn~v × ~B

= (q1 + q2 + . . .+ qn)~v × ~B,

= Q~v × ~B,

where Q is the total charge moving with velocity ~v.

1b. Relationship Among Q, ~v, And I. In order to state the mag-
netic force in terms of the measured current, I, we must find the rela-
tionship of Q and ~v to I. The amount of charge dQ in a small length of
conducting wire d` is given by the overall charge per length, Q/` times
the length d`:

dQ =
Q

`
d` (2)

If we hold a current measuring instrument at one point and watch a length
d` of charge go by, for all of d` (and therefore, all of dQ) to pass the point
takes a time

dt = d`/v (3)

where v is the speed of the charges making up the current. Now the
definition of current at a point is the amount of charge per unit time

1See “Force on a Charged Particle in a Magnetic Field” (MISN-0-122).
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passing the point:

I =
dQ

dt
=
(Q/`)d`

d`/v
=

Qv

`
. (4)

Remember, however, that the velocity of positive charges and the current
are in the same direction, so actually:

~I` = Q~v. (5)

For convenience, we will transfer the designation of the current’s direction
to the length of the straight section of current-carrying wire:

I~̀= Q~v. (6)

Remember that the direction of ~̀ is always to be taken in the direction
of the current.

1c. Force on a Current. Now it is easy to state the magnetic force
in terms of current. For a set of charges all moving with the same speed
in the same direction,

~FB = Q~v × ~B, (7)

or:
~FB = I ~̀× ~B. (8)

Notice that, in a complete electrical circuit, ~̀ will have to have several
different directions, so different sides of a current loop will in general
have different forces on them. The total force on a current loop is then
the sum of the force on its separate sides (and if the loop is made up of
curved circle, for example, the total force would be the integral of the
small elements of force d ~F acting on each small length d~̀).

2. A Rectangular Current

2a. Plane of Loop Parallel to ~B. Let us calculate what will happen
to a rectangular loop of current in a uniform magnetic field ~B. First let
us take the simple case where the loop is in the x-y plane and ~B is in the
x-direction. We must apply Eq. (8) to each of the four sides of the loop
separately (see Fig. 1):

a. Side a: ~Fa = 0 Help: [S-3]

b. Side b: ~Fb = −ILBẑ; ~F tends to push side b into the page Help: [S-4]
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Figure 1. A rectangular current
loop in a magnetic field parallel to
the loop’s width.

c. Side c: ~Fc = 0

d. Side d: ~Fd = ILBẑ; ~F tends to push side d out of the page.

Thus the net result of the four forces is to produce a torque on the current
loop about an axis through its center, parallel to the y-axis. We can
calculate the torque about this axis:2 Help: [S-6]

~τ =
∑

i

~τi =
∑

i

~ri × ~Fi = ~ra × ~Fa + ~rb × ~Fb + . . . (9)

= [0 +
W

2
ILB + 0 +

W

2
ILB]ŷ

= WLIBŷ = (AI B) ŷ

where A =WL is the area enclosed by the loop.

Suppose the loop starts rotating in response to the torque, resulting
in ~B no longer being in the plane of the loop. Then the equations derived
above will no longer be valid because they assumed that ~B is in the loop
plane.

2b. Loop at an Angle to ~B. Since a torque on a loop will cause it
to rotate, we now treat the case where such a rotation has produced an
angle θ between ~B and the normal to the plane of the loop (when ~B is in
the loop plane, θ = 90◦).3 Figure 2a shows our rectangular current loop

2See “Force and Torque” (MISN-0-5).
3The “normal” to the plane of the loop is a unit vector perpendicular to the plane.
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Figure 2. (a) Oblique view of a rectangular current loop

whose normal is at an angle to ~B; and (b) top view of the
current loop.

with its normal rotated away from ~B by some angle θ. Figure 2b shows
an overhead view of the same loop. Again we consider the force on each
side separately:

a. Side a: ~Fa = IWB sin(90◦ + θ) ŷ = IWB cos θŷ. The direction of ~Fa

is such as to push side a and the entire current loop upward, in the
positive y-direction.

b. Side b: ~Fb = I LB(−ẑ). The direction of ~Fb is such to push side b
backward, in the negative z-direction.

c. Side c: ~Fc = I W B sin(90◦−θ)(−ŷ) = I W B cos θ(−ŷ). The direction

of ~Fc is such as to push c and the entire current loop downward, in the
negative y-direction.

d. Side d: ~Fd = I LB ẑ. The direction of ~Fd is such as to push d forward,
in the positive z-direction.

Now notice that although the forces on sides a and c are no longer zero,
they have equal and opposite effects and are radial; hence they have no
effect other than a tendency to deform the loop if it is not rigid.4 The
forces on sides b and d still operate in such a way as to produce torques
on the loop:

~τb =
W

2
I`B sin θ ŷ ,

4(1) Adding equal but opposite forces yields zero net force; and (2) any radial force
produces zero torque.
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~τd =
W

2
I`B sin θ ŷ ,

and thus the total torque is:

~τ =W LI B sin θ ŷ = AI B sin θ ŷ .

It is apparent that the torque on the current loop is a maximum for
θ = 90◦ (i.e. for ~B in the plane of the loop as in Fig. 1) and zero for
θ = 0◦. Thus the tendency is for a current loop in a magnetic field to
rotate until its normal is parallel to ~B, and for it to decelerate as it shoots
past that alignment. We could convert this oscillating loop into a rotating
one and use it as a means of turning electrical energy into mechanical
energy—that is, as a DC motor—if we could reverse the current in the
loop just as its normal becomes parallel to ~B.

2c. Generalization to a Current-Carrying Coil. It should be
noted that it is a simple matter to generalize from the force or torque
on a single turn loop of current to the force or torque on a many turn
coil. In general, coils are wound with the area of each turn the same as
all the others and of course the same current would flow through them
all. Thus the force or torque on an n-turn coil is generally just n times
the force or torque on a one-turn coil.
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A. Geometrical Definition of Vector Product

The vector product of two arbitrary vectors ~A and ~B is defined as
the vector quantity whose magnitude is given by the product of the mag-
nitudes of the two vectors times the sine of the angle between the vectors
when they are placed “tail-to-tail,” and whose direction is perpendicular
to the plane formed by ~A and ~B. The vector product (also referred to as

the “cross product”) is denoted by ~A× ~B. The magnitude of the product
may be written as:

| ~A× ~B| = AB sin θ.
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There are, however, two directions that are perpendicular to the plane
formed by ~A and ~B. The correct direction may be chosen by applying the
“right-hand rule”: “Rotate vector ~A into vector ~B through the smaller
angle between their directions when they are placed tail-to-tail. Follow
this rotation with the curled fingers of your right hand, and the direction
of your extended thumb identifies the direction of the vector product.”
This rule is sufficient to distinguish between the two possible choices for
the direction of a vector product. Notice that the order of multiplication
in vector products is very important. The product B × ~A has the same
magnitude as ~A× ~B, but the directions of the two products are opposite.
In general:

~A× ~B = − ~B × ~A.

We say that vector products do not “commute,” or that the vector product
is a “noncommutative” operation.

If two vectors are parallel, the angle between their directions is zero,
so by the definition of the magnitude of vector products their cross prod-
uct is zero. Similarly, if two vectors are perpendicular, the angle between
their directions is 90◦. Since sin90◦ = 1, the magnitude of the vector
product of the two is just the product of their magnitudes, and the di-
rection of the vector product is determined by the right-hand rule. By
applying these observations to the vector product of the cartesian unit
vectors x̂, ŷ and ẑ, we may derive the following useful relations:

x̂× x̂ = ŷ × ŷ = ẑ × ẑ = 0

x̂× ŷ = −ŷ × x̂ = ẑ

ŷ × ẑ = −ẑ × ŷ = x̂

ẑ × x̂ = −x̂× ẑ = ŷ.

These relations are used in the algebraic definition of vector prod-
ucts.

B. Algebraic Definition of Vector Product

If we express vectors ~A and ~B in their cartesian component form, the
vector product of ~A and ~B may be written:

~A× ~B = (Axx̂+Ay ŷ +Az ẑ)× (Bxx̂+By ŷ +Bz ẑ).

If this expression is expanded algebraically as we would the product
(x+ 3) · (2x− 5), except that the cross product is used instead of scalar
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multiplication, then this vector product may be expressed as a combina-
tion of the cartesian components of ~A and ~B and cross products of the
cartesian unit vectors. Using the relations between the cartesian unit vec-
tors developed in Appendix A and denoting the vector product as a third
vector ~C, we may write:

~C = ~A× ~B = (AyBz −AzBy)x̂+ (AzBx −AxBz)ŷ + (AxBy −AyBx)ẑ

or:
Cx = AyBz −AzBy,

Cy = AzBx −AxBz,

Cz = AxBy −AyBx.

The mnemonic for remembering the order of the subscripts on these com-
ponents is to note that, starting from left to right, the first three subscripts
in each of the three equations for the components of ~C are always cyclic
permutations of xyz (xyz, yzx, zxy). Another way to remember the order

of combination of the unit vectors and the components of ~A and ~B is to
use this determinant:

~C = ~A× ~B =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣

∣

∣

∣

∣

∣

Expansion of this determinant leads to the same expression for ~C derived
earlier.

¤ Show that the vector product of ~A = 5x̂− 2ŷ and ~B = x̂+ ŷ + 3ẑ has
these components:

Cx = −6, Cy = −15, Cz = 7.
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C. Direction of the Vector Product

rotational

motion
rotational

motion
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`
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` ` `
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`
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A
`

Figure 3. Two rules for finding the direction of ~C = ~A× ~B
by: (a) the “right hand” rule; (b) the “screw” rule.
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PROBLEM SUPPLEMENT

Note: Problems 6 and 7 also occur in this module’s Model Exam.

1. Calculate the force on each of the five current-carrying wire seg-
ments shown below, if the field is ~B = 1.10T x̂, I = 3.0A,
and d = 0.15m. Consider each wire individually. Help: [S-1]

B
`

z

d

d

d

x

1

2

3

4

5

2. A section of a current-carrying wire is fixed so that it can
slide up and down on two vertical metal guides as shown
below. What magnetic field (magnitude and direction) is
needed to prevent the sliding section from dropping and break-
ing the connection? The section is 0.30m long, weighs 5N,
and has a current of 5.0A passing through it. Help: [S-5]

y

z

x

0.30 m

3. A rectangular current loop, 5.0 cm by 8.0 cm, is fixed on one side
so that it rotates about the z-axis as shown below. If it carries a
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current of 10A and it is in a uniform magnetic field of ~B = 0.50T x̂,
calculate the torque about the z-axis acting on the loop when θ = 60◦.
Help: [S-5]

q

I

z

y

x

8
.0

cm

5.0 cm

4. A rectangular current loop, 4.0 cm by 8.0 cm and car-
rying a current of 0.1A, is suspended at a single point
as shown. It is in a uniform horizontal magnetic
field of magnitude 0.75T. Find the magnitude of the
torque acting on the loop when the normal to the
plane of the loop makes an angle of 30◦ with respect
to the magnetic field.

I I

5. Calculate the magnitude of the maximum torque on a coil 3.0 cm by
5.0 cm, composed of 500 turns, when it carries a current of 1.0×10−3A
in a uniform magnetic field of magnitude 0.050T. Help: [S-7]

6. A 500-turn square coil (2 cm on a side)
in the x-z plane is in a magnetic field of
magnitude B = 0.16T and direction x̂.
A current is passed through the coil, and
it is observed that an external torque of
−1.6×10−3Nm ẑ is required to hold the
coil in place. What are the magnitude
and direction of I?

B

z

y

x
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7. A rectangular current loop is in a mag-
netic field of magnitude B = 0.5T and
direction x̂. The plane of the loop makes
a 60◦ angle with the direction of the mag-
netic field. The dimensions of the loop
and direction of current are as shown in
the figure, and I = 20A. Calculate the
forces on each of the four sides. Then
calculate the torque, on the entire loop,
about the y-axis.

B

I

8 cm

8 cm

8 cm

z

y

x

60°
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Brief Answers:

1. ~F1 = 0.495N ŷ; ~F2 = 0; ~F3 = 0.495N ŷ − 0.495N ẑ = 0.495N (ŷ − ẑ);
~F4 = −0.495N ẑ; ~F5 = 0.495N ŷ − 0.495N ẑ = 0.495N (ŷ − ẑ).

2. Magnetic field must have a horizontal component of 3.3T into the
page. Help: [S-2]

3. ~τ = −0.010Nm ẑ

4. τ = 1.2× 10−4Nm

5. τ = 3.75× 10−5Nm

6. I = 0.05A. Observed from above, I flows clockwise around the coil.

7. Top: ~F = −1.4N ŷ

Front: ~F = −0.8N ẑ

Bottom: ~F = 1.4N ŷ

Back: ~F = 0.8N ẑ

~t = 6.4× 10−2Nm ŷ

16
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS, problem 1)

1. Recall that we always use a right-handed coordinate system, i.e.
x̂× ŷ = ẑ, so the positive y-direction is into the page (away from you).
Thus the cube pictured in Problem 1 is in the quadrant of 3-dimensional
space where all coordinates are positive. Do not be put off by the
orientation of the axes in the figure: axes can be shown in any orientation
as long as they show a right-handed coordinate system.
2. To begin the problem, do as always: Decide on the relevant equation
to use, then write down each vector quantity in that equation in terms
of unit vectors and given quantities, using symbols to represent the
given quantities. One way to finish the problem is to then solve each
component equation separately.

S-2 (from PS, problem 2)

The sliding section of current-carrying wire needs a magnetic force in
the +y-direction to cancel the weight of the wire. The direction of the
current (and thus ~̀) is in the +x-direction. Since ~FB = I~̀× ~B and ~FB

must be mutually perpendicular to ~̀ and ~B, the only possible choice
for ~B is in the positive or negative z-direction. Take either choice and
apply the right-hand rule to determine if it gives the correct direction
for ~FB .

S-3 (from TX, 2a)

The current in side a goes left so `a is in the −x̂ direction. The magnetic
field ~B goes right so B̂ is in the +x̂ direction. The angle between the two
is 180◦ so their vector product is zero (see this module’s appendices):

(−x̂)× (+x̂) = 0 .
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S-4 (from TX, 2a)

The current in side b goes up so `b is in the +ŷ direction. The magnetic
field ~B goes right so B̂ is in the +x̂ direction. The angle between the
two is 90◦ so their vector product is (see this module’s appendices):

~FB = ILB(ŷ × x̂) = ILB(−ẑ) .

The direction ẑ is given by (see this module’s appendices): x̂ × ŷ = ẑ,
so the direction +ẑ is out of the page and consequently −ẑ is into the
page.

S-5 (from PS, Problems 1, 2, 3)

First do the example in Sect. 2a, in excruciating detail. When you un-
derstand every nuance of that example, do the example in Sect. 2b in
similar detail. Then you should be able to solve these problems on your
own.

S-6 (from TX, 2a)

Recall that ~rb is the vector from the rotation axis to the point of ap-
plication of the force. Now notice that the force on side b is in the
opposite direction to the force on side d (remember?). Then the axis
about which the loop rotates cuts down through the center of the loop,
bisecting sides a and c [see Fig. (1)]. Then the vector from that central
vertical axis out to side b is: ~rb = (W/2)x̂ [see Fig. (1)]. We already

found that ~Fb = ILB(−ẑ), so:

~τb = ~rb × ~Fb = (W/2)(ILB)x̂× (−ẑ)

= −(W/2)(ILB)x̂× ẑ

= +(W/2)(ILB)ŷ

18
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S-7 (from PS, Problem 5)

The word “500 turns” indicates that the continuous insulated wire was
coiled around and around 500 times and then the whole set of 500 turns
was glued together, keeping roughly the same shape as a single turn.
The result is that 500 times as much current passes any one point on
the loop as would pass that point if there was only one turn of wire.

If you are having trouble finding the angle, look at the word maximum.
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MODEL EXAM

1. See Output Skills K1-K2 in this module’s ID Sheet.

2.

B

z

y

x

A 500-turn square coil (2 cm on a side) in the x-z plane is in a mag-
netic field of magnitude B = 0.16T and direction x̂. A current is
passed through the coil, and it is observed that an external torque of
−1.6 × 10−3Nm ẑ is required to hold the coil in place. What are the
magnitude and direction of I?

3.

B

I

8 cm

8 cm

8 cm

z

y

x

60°

A rectangular current loop is in a magnetic field of magnitude B =
0.5T and direction x̂. The plane of the loop makes a 60◦ angle with
the direction of the magnetic field. The dimensions of the loop and
direction of current are as shown in the figure, and I = 20A. Calculate
the forces on each of the four sides. Then calculate the torque, on the
entire loop, about the y-axis.
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Brief Answers:

1. See this module’s text.

2. See Problem 6 in this module’s Problem Supplement.

3. See Problem 7 in this module’s Problem Supplement.
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