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THE ELECTROSTATIC POTENTIAL

by

J.S.Kovacs and P.S. Signell

1. Introduction

1a. Overview. In this module we build on the idea of the electrostatic
field to develop the idea of electrostatic potential, which is the capacity of
an electrostatic field to do mechanical work. This is an important con-
cept for designing or repairing almost any electric or electronic device.
The strength of electrostatic potential is measured in volts, usually us-
ing a voltmeter, and is often referred to as “the voltage.” For example,
“The voltage on this Walkman battery is down to 8.2, where it should
be at least 8.8 volts.” The electrostatic field is a vector quantity but
the electrostatic potential is a scalar quantity. We will find that for any
electrostatic field which is specified throughout a region, we can perform
a scalar (one-dimensional) integration on it to get the electrostatic po-
tential throughout the region. Similarly, given the electrostatic potential
throughout a region, we can take a vector (three-dimensional) derivative
of it to obtain the electrostatic field throughout the region. As an in-
termediate concept between the electrostatic field and the electrostatic
potential, we will deal with the electrostatic potential energy of specific
charged particles.

1b. The Gravitational Analogue. Recall that gravitational poten-
tial energy is a very useful concept. For example: If an object is dropped,
then its gravitational potential energy is converted to kinetic energy and
its speed can be easily calculated. One obtains an object’s gravitational
potential energy by calculating the work that must be done against the
force of gravity while one mechanically moves the object from some ref-
erence point to the object’s present position. For example, if you take an
object with a mass of 5 kg from ground level to the top of a 30 m tall
building, then the potential energy of the object increases by 150 J. If the
object is then dropped from the top of the building down to the ground
level, the 150 J of gravitational potential energy at the top is converted
to kinetic energy at the bottom plus some energy that went into frictional
heating of the the air through which the object passed as it descended.
Thus the gravitational potential energy at the top equals the work done,
against gravity, in taking the object from ground to top, and it also equals
the work done by gravity in taking the object from top to ground. One
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word of caution: When doing electrostatic calculations and making analo-
gies to the gravitational case, note that masses always experience a force
in the direction of the gravitational field. Thus for the electrostatic case
the equivalent of a mass is a positive charge since it always experiences a
force in the direction of the electrostatic field.

2. Electrostatic Potential Energy and Potential

2a. Electrostatic Potential Energy. If a particle having charge q is
placed at a space-point ~r in a region where an electrostatic field ~E exists,
then the electrostatic field exerts an electrostatic force ~F on the charged
particle:

~F = q ~E . (1)

If the charged particle is mechanically moved along some path from one
space-point to another space-point, the total work done against the elec-
trostatic force is:1

W (q, ~r1 → ~r2, against ~E) =

∫ ~r2

~r1

(−~F ) · d~̀= −q

∫ ~r2

~r1

~E · d~̀, (2)

where d~̀ is an element of length along the path. The electrostatic force is
known to be a conservative force, so the work in Eq. (5) is the same for all
paths connecting the same two end-points and that means we can define
a potential energy Ep(q, ~r) for a particle with charge q at space-point ~r
without saying what path was used to get there:2

Ep(q, ~r2)− Ep(q, ~r1) = W (q, ~r1 → ~r2, against ~E) . (3)

Note that only changes in potential energy have been defined. However,
we can stop talking about changes between two points in space if we
specify some point ~r0 as the electrostatic potential energy reference point,

1The definition assumes that a bare minimum of work is done, just enough to barely
overcome the electrostatic force and not, for example, enough to change the particle’s
kinetic energy. The force necessary to barely overcome the electrostatic force is just
the negative of the electrostatic force.

2(only for those interested) We know both experimentally and theoretically that
the electrostatic force is a conservative force. The theoretical proof uses a remarkable
mathematical theorem which says that since ~∇ × ~F = 0 for all electrostatic forces, a
line integral of ~F between any two points is independent of the particular path used
for the line integral. The line integral of the force is just the work done, so the work
done is path-independent and that means the force is conservative.
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a point where we specify that the electrostatic potential energy is zero:3

Ep(q, ~r0) = 0 .

Then we can talk about the particle’s actual potential energy at any
point, although it is to be understood that we are referring to the change
in potential energy when the particle is moved from the reference point
to the point in question:

Ep(q, ~r) ≡W (q, ~r0 → ~r, against ~E) .

2b. Electrostatic Potential. In dealing with electrostatic devices, it
is often useful to deal with a given electrostatic field’s ability to trans-
fer stored energy to a wide variety of amounts of charge. Thus at any
space-point ~r we define the electrostatic potential, V (~r), as the work per
unit charge that must be done against the electrostatic field to bring any
charge from the reference point to the space-point in question. Equating
the work-per-unit-charge to potential energy-per-unit-charge, we get the
electrostatic potential, V (~r), as:

V (~r) ≡ Ep(q, ~r)

q
= −

∫ ~r

~r0

~E · d~̀. (4)

This potential is really the difference between the potential at ~r and the
potential at the reference point and it is what is displayed on a voltmeter
when the negative lead is placed on the reference point and the positive
lead is placed on the point ~r. More generally, the reading displayed on
the voltmeter is the amount that the potential at the point of the positive
lead is higher than the potential at the point of the negative lead. It gives
the amount of work per unit charge that one must do against the electro-
static field to move positive charge from the negative-lead position to the
positive-lead position and this equals the amount of work the electrostatic
field will do in moving positive charge from the positive-lead position to
the negative-lead position.4

3In any particular problem, the reference point is chosen for convenience. In an
electrostatic or electronic circuit, the traditional choice for ~r0 is the negative terminal
of a battery or the circuit ground point(s). In the case of a localized set of electrostatical
charges, ~r0 is taken as infinitely far away from the charges so r0 = ∞. Note that ~r0

can be a set of points or a surface or a region of points as long as it takes no work to
move among those points so “they are all at the same potential.”

4The voltage across the terminals of flashlight cells is usually 1.5 volts; across lantern
batteries, 6 volts; radio batteries, 9 volts; car batteries, 12 volts; and across the termi-
nals in wall outlets, 110 volts or 220 volts (although this is an alternating voltage so
the subject benefits from further discussion).
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Q

r

P
r̂

Figure 1. The unit vector r̂ at point ~r a distance r from
point charge Q.

2c. Case: A Constant Electrostatic Field. Suppose the magnitude
of an electrostatic field is constant throughout a region of space, with the
value E0. Suppose also that it has the same direction everywhere in the
region. Then for convenience we can orient our coordinate axes so that
the electrostatic field is along our x-axis:

~E(~r) = E0x̂ ,

where x̂ is a unit vector in the direction of increasing x. Then the force
on a particle with charge q is:

~F = qE0x̂ ,

and the particle will have constant acceleration parallel to the x-axis.
Let us choose the reference point for the electrostatic potential to be the
coordinate origin so the potential is:

V (~r) = V (x) = −
∫ x

0

E0x̂ · ~dx = −E0

∫ x

0

dx = −E0(x− 0) = −E0x .

With the usual orientation of coordinate axes, the force on a positively-
charged particle will be to the right so that is the equivalent of the “down-
hill” direction in the gravitational case. This means that the “uphill” di-
rection must be to the left. The reference point, the “bottom of the hill,”
is the origin so the “top of the hill”, which is in the “uphill” direction
from the “bottom”, must be to the left of the origin. Since the value of x
is negative to the left of the origin, the electrostatic potential is positive
there (see Eq. (3)), and that is as it should be for the “top of the hill.”

2d. Case: Two Charged Particles. Suppose an electrostatic field
is produced by a charged particle Q at the coordinate origin. Then the
electrostatic field at the space-point ~r is:

~E(~r) = ke

Q

r2
r̂ , (5)
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where r̂ is the unit vector, at the point ~r, pointing in the direction of
increasing r as shown in Fig. 1. If a particle with charge q is placed at
this point it is acted on by an electrostatic force:

~F = ke

qQ

r2
r̂ ,

which is just the Coulomb force between two charged particles. For the
potential, it is customary and mathematically easiest to take the reference
point as any point for which r =∞. Then the potential at r, which is the
work-per-unit-charge done against the electrostatic field of Q in bringing
a charge from the reference point to radius r, is:5

V (~r) =

∫ r

∞

−keQ
1

r2
dr = ke

Q

r
.

The work-per-unit-charge that the electrostatic field will do to take a
charge from r to ∞ is the same:

V (~r) =

∫ ∞

r

keQ
1

r2
dr = ke

Q

r
.

Assuming Q to be positive, the direction of the electrostatic field is away
from the origin so that direction, for a positive charge placed “on the
hill,” is equivalent to “down hill.” The “top of the hill” is at the origin
and the potential is infinitely positive there. Some hill! If Q is negative,
however, note that there is an infintely deep potential hole at the origin!

2e. Using Conservation of Energy. We can use conservation of
energy to calculate a particle’s change in velocity when it moves from
one point to another solely under the influence of electrostatic forces.6

Fir example, consider the case of two protons that are initially at rest
relative to one another and are 10−15 m apart.7 In this configuration,
the set of particles has a potential energy equal to 2.3× 10−13 J and zero
kinetic energy. If one of the particles is held fixed while the other is
released, the free particle will move away from the fixed one because of
the repulsive Coulomb force. Its velocity will increase continuously. How

5The integration is:
∫

r

∞
r−2 dr = − r−1

∣

∣

r

∞
= −

1

r
+

1

∞
= −

1

r
. Help: [S-4]

6When only conservative forces act on a system, the total energy, kinetic plus
potential, is a constant (see MISN-0-21, Sect. 3). As mentioned earlier, electrostatic
forces are conservative forces so any particle moving under their sole influence has
constant total energy.

7Distances of this magnitude are roughly the size of the separation of the particles,
neutrons and protons, inside an atomic nucleus.
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large a speed will it eventually reach (the proton mass is 1.67×10−27 kg)?
Note: When the free particle has moved a very large distance away, so
that the potential energy of the pair of particles is very close to zero, the
total energy of this system is almost all in the form of kinetic energy of the
free particle. We find that. for the numbers cited, its eventual speed is
1.66×107 m/s, about five percent of the speed of light. Help: [S-2]

3. Several Point Charges

3a. Electrostatic Potential. If charges Q1, Q2, . . . , are located at
distances r1P , r2P , . . . , respectively, from a point P , then the electrostatic
potential at point P is:

V =
∑

i

ke

Qi

riP

= ke

∑

i

Qi

riP

.

This is the sum of the potentials due to each charge alone. The reason
that the contributions from the individual charges simply add is that the
potential at any point is defined in terms of the work necessary to bring
a test charge from infinity to that point, and work produced by various
sources is additive.

3b. Potential Energy. The electrostatic potential energy of a collec-
tion of point charges, Q1, Q2, . . . , is just the sum of the potential energies
between all pairs of the charges. Thus the total potential energy of three
charges is:

Ep = ke

Q1Q2

r12

+ ke

Q1Q3

r13

+ ke

Q2Q3

r23

,

where r12 is the distance between charges Q1 and Q2, etc. If you want to
program the rule into a computer, using an arbitrary number of charges,
you must write the equation this way:

Ep =
1

2

∑

i,j

′

ke

QiQj

rij

=
ke

2

∑

i,j

′QiQj

rij

,

where the prime on the summation signs mean than you include only
terms where i 6= j. The quantity rij is the distance between Qi and Qj .
The factor of one-half occurs because the summation symbol causes the
energy for each pair of particles to be included twice (the term Q1Q2/r12

is the energy for the same pair as is the term Q2Q1/r21). Another way of
saying it is that the inter-particle energy for any particular pair is included
twice: once for i > j and again for i < j.
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4. Units

The unit of the potential V(r) is seen from its defining expression,
Eq. (4), to be the “newton meter per coulomb,” which is also the “joule
per coulomb.” This unit is called the volt, abbreviated V.

The unit of electrostatic field, the “newton per coulomb”, is com-
monly expressed in its equivalent form, the “volt per meter.”

Acknowledgments
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the National Science Foundation, Division of Science Education Devel-
opment and Research, through Grant #SED 74-20088 to Michigan State
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Glossary

• electrostatic potential: a scalar field whose value at any point in
space is usually defined as the work per unit charge required to bring
a charged particle from infinity to that field point. For a point in an
electronic circuit, it is the work per unit charge required to bring a
charged particle from the circuit’s “ground” to the given point (this
quantity can be read on a voltmeter).

• electrostatic potential energy: the potential energy of a charge or
group of charges due to their interaction with an electrostatic field (this
quantity is usually computed by multiplying the electrostatic potential
at a point in space by electrostatic charge at that point).

• volt: the unit of electrostatic potential, abbreviated V; volt = joule
per coulomb, usually written V = JC−1.
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PROBLEM SUPPLEMENT

Note: Problems 11 and 12 also occur in this module’s Model Exam.

1.

P1

P2

y (meter)

x (meter)

At point P1 (x = −0.300m, y = 0.000m) is located a charge Q1 =
−4.00 × 10−6 C. At point P2 (x = 0.000m, y = 0.400m) is located a
charge Q2 = −5.00× 10−6 C.

a. Find the potential energy of this system of two charges so arranged.

b. If one of the charges (Q1) is held fixed and the other (Q2) is allowed
to move an infinite distance away, what now is the potential energy?

c. Where does the difference in potential energy go?

d. If the particle having charge Q2 also has mass M = 0.00500 kg, what
is its speed when it is an infinite distance from Q1? Help: [S-2]

2. Referring to the figure of Problem 1 above, answer the following:

a. Due to the two charges what is the total electric potential at the
origin?

b. If a charge Q3 = +2.00×10−6 C is placed at the origin and another
charge Q4 = +5.00×10−6 C is placed at x = +0.300m, y = 0.000m,
what is now the total potential energy of this system of four fixed
charges? Help: [S-1]

c. To take the particle Q4 to infinity would you have to do work or
would the electric fields do the work for you as they did in part
(b) of Problem 1 where the charged particles ended up with kinetic
energy?

3. Two charges, q1 = +3.0× 10−6 C and q2 = +2.0× 10−6 C are fixed in
space a distance d = 5.0 cm apart, as shown:

12
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d_
2

d_
2

0q1 q2

What is the electric potential at point O? How much work must be
done in order to bring a third charge q3 = 2.0×10−6 C in from infinity
to point O?

4. Four charges are placed at intervals of 90◦ around a circle as shown:

q q

-q

a

-q

a. Find an expression for the electric potential at the center of the circle.

b. What is the electric potential energy of this charge configuration?

c. Derive an expression for the work required to bring another charge +q
in from infinity to the center of the circle.

5. Calculate the electric potential, due to the proton (1.6 × 10−19 C) in
a hydrogen atom, at the mean distance of the orbiting electron (5.3×
10−11 m). What is the potential energy of the electron-proton system,
the atom, in joules? What is the potential energy of the atom in units
of electron-Volts (eV) where eV= 1.6× 10−19 J? The energy needed to
ionize a hydrogen atom, to remove its electron completely, is known
to be 13.6 eV. Explain why this is different from your calculated value
for the potential energy.

13
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6. The sodium ions in a salt crystal each have six chlorine ions surround-
ing them. The chlorine ions can be considered to be lying on the faces
of a cube with the sodium ion at its center. If the sodium-chlorine
distance is 2.82× 10−10 m, how much energy is required to completely
separate a sodium ion from its neighboring chlorine ions?

Supplementary Problems:

7. Which of the following completions of the statement are correct?
(More than one may be correct.) The static electric potential at a
point (in a region of space where there are several point charges which
contribute to this potential) is:

a. The vector sum of the contributions to this potential from each of
the point charges.

b. The scalar sum of the contributions to this potential from each of
the point charges.

c. The work per unit charge that must be done to bring a positive
test charge from an infinite distance to that point in space.

d. The force per unit charge that would act on a positive test charge
placed at the point. Answer: 12

8.

(A)

(B)
P

P+Q +Q

+Q -Q
L
2

L
2

L
2

L
2

Two point charges are separated by a distance L. In case (A) the
two are equal charges both in magnitude and sign, both being +Q
charges. In case (B) the two charges are of equal magnitude but of
opposite sign, +Q and −Q. In each of the two cases, find both the
electric field intensity, ~E, and the electric potential at the point P
midway between the two charges.

Case A: ~E(P ) = Answer: 11 ; V (P ) =
Answer: 7.

Case B: ~E(P ) = Answer: 13 ; V (P ) =
Answer: 8.

14
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9. The units of electric potential are equivalent to which of the composite
units below? Answer: 11

a. newton per coulomb

b. joule per coulomb

c. joule per newton

d. coulomb per meter

e. coulomb per joule

10.

Q

Q

y (m)

x (m)

Q

0.5

0.5

Three point charges, each of charge Q = +3.00×10−5 C are arranged
at the vertices of an isosceles triangle shown above (one of the charges
is at x = −0.200m, y = 0.000m, another is at x = +0.200m, y =
0.000m, and the third is at x = 0.000m, y = 0.400m.)

a. What is the total potential energy of this system of three charges?
Answer: 14

b. How much work would you have to do to bring these three charges
together this way (bringing them from infinite relative separa-
tions)? Answer: 9

c. If you released these charges and allowed them to fly apart as a
consequence of their mutual repulsion, what total kinetic energy
would these have when they got to infinite separation? Answer:
18

d. What is the electric potential at the origin due to this system
of three charges arranged in the above triangular configuration?
Answer: 16 What is the potential at x = +0.3m, y = 0? Answer:
10

e. How much work would you have to do to bring charge Q′ = +1.0×
10−6 C from x = +0.30m, y = 0 to the origin? Answer: 20

f. Due to the triangle of charges, what is the electric field at the
origin? Answer: 13

15
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g. What is the force on a charge Q′′ = −1.00× 10−6 C placed at the
origin in the presence of the three triangularly arranged charges?
Answer: 15

11.
y (meter)

x (meter)

q

q

q

-6 6

8

Three point charges, each of charge q = 2.0 × 10−6 C, are located at
(6.0m, 8.0m), (−6.0m, 8.0m), and at the origin of the above cartesian
coordinate system.

a. Calculate the electric potential at the point (0.0m, 8.0m) due to
these three point charges. Answer: 21

b. Determine the electric field at the same point. Answer: 21

c. A fourth charge, Q = 4.0 × 10−6 C is placed at the point
(0.0m, 8.0m) having initially been infinitely distant from all other
charge. Calculate the change in the potential energy of the charge
Q, due to the above three charges. Answer: 21

12.
Q Qq

a a

q = +3.0× 10−6 C,

Q = +5.0× 10−6 C, a = 2.5m

a. Calculate the potential energy of the above assembly of charges.
Answer: 22

b. Calculate the new potential energy of the system if one of the two
objects with charge Q is physically interchanged with the object
with charge q. Answer: 22

16
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c. Use the work-energy principle to determine the work done by the
external agent which interchanged the objects in part (b). Answer:
22

Brief Answers:

1. a. 0.360 J.

b. zero.

c. It goes into kinetic energy of the particle with charge Q2. Because
there are no other forces except the electrical force between Q1 and
Q2, the total energy, kinetic plus potential, is conserved: (Ep+Ek)
at the position shown, equals (Ep + Ek) when Q2 goes to infinity.
At infinity Ep equals zero. When they are as shown in the sketch,
EK = 0.

d. v = 12.0m/s. Help: [S-2]

2. a. −2.32× 105 V.

b. −0.555 joules.
c. You would need to do work because the potential energy would

increase.

3. V0 = ke

[

q1

d/2
+

q2

d/2

]

= (8.99× 109 Nm2 C−2)

[

(2.0 + 3.0)× 10−6 C

2.5× 10−2 m

]

= 1.8× 106 V

W = q3V0 = (2.0× 10−6 C)(1.8× 106 V) = 3.6 J.

4. a. V = ke

[

q − q + q − q

a

]

= 0

b. Ep = ke

[

q2

2a
+

(2q)(−q)

a
√
2

+
(2q)(−q)

a
√
2

+
(−q)2

2a

]

= ke

q2

a
(1− 2

√
2)
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c. W = qV = 0

5. V = ke

e

r
=

(8.99× 109 Nm2 C−2)(1.6× 10−19 C)

5.3× 10−11 m
= 27V

Ep = e V = (−1.6× 10−19 C)(27V) = −4.3× 10−18 J = −27 eV

The electron also has kinetic energy of (27/2) eV.

6. W = 6

(

ke

e2

r

)

= (6)(8.99 × 109 Nm2 C−2)

(

(1.6× 10−19 C)2

2.82× 10−10 m

)

=

4.9× 10−18 J

7. 4keQ/L

8. Zero

9. 56.5 J

10. 3.78× 106 V

11. (b)

12. (b) and (c) are correct

13. −(1.69× 106 N/C)ŷ

14. 56.5 J

15. +(1.69N)ŷ

16. 3.38× 106 V

17. Zero

18. 56.5 J

19. 8keQ/L2 directed to the right

20. Q′(Vf − Vi) = −0.405 J [you wouldn’t have to do the work, the field
would do it; work done by field= Q′(Vi − Vf )].

21. a. V = 8.2× 103 V

b. ~E = (2.8× 102 V/m)ŷ or (2.8× 102 N/C)ŷ

18
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c. ∆Ep = 0.033 J

22. a. Ep(initial) = 0.15 J

b. Ep(final) = 0.17 J

c. Wexternal = +0.018 J

19
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS, Problem 2)

The potential energy is the work you must do in assembling the system
of charges, starting with the charges infinitely distant from one another
[i.e. Ep(initial) = 0]. The work done in assembling the pair Q1 and
Q2 was calculated in Problem 1a. The work done in bringing Q3 from
infinity to the origin can be calculated from knowing the potential at
infinity (zero) and at the origin due to Q1 and Q2 (Problem 2a). To find
the potential energy change when Q4 is brought to the point (0.3m, 0),
calculate the potential at this point due to Q1, Q2 and Q3 and apply
Eq. (5). The result is:

Ep(total) =Ep(initial) + ∆Ep(Q1 + Q2) + ∆Ep(Q3) + ∆Ep(Q4)

= 0 + 0.36 J + (2× 10−6 C)(−2.3× 105 V) + Q4V123(0.3m, 0)

where V123(0.3m,0) is the potential at (x = 0.3m,y = 0) due to charges
Q1, Q2, and Q3. Alternatively you could use the expression:

Ep(total) = ke

∑ QiQj

rij

where rij is the distance between the pair of charges Qi and Qj , and the
summation is over all charge pairs. Neither count a charge pair twice
nor calculate the potential energy of interaction of a charge with itself!

S-2 (from TX, 2c and PS, Problem 1d)

From mechanics, recall the relationship between a particle’s kinetic en-
ergy, velocity and mass. In this problem we know the particle’s kinetic
energy and mass, so we can solve for its velocity.

S-3 (from PS, Problem 5)

Recall that the electron charge is just the negative of the proton charge.
You can easily get the answer in joules from the answer given.

S-4 (from TX, 2b, Eq. (2))

∫

x−n dx =
1

−n + 1
x−n+1

20
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MODEL EXAM

ke = 8.99× 109 Nm2/C2

1. See Output Skill K1 in this module’s ID Sheet.

2.
y (meter)

x (meter)

q

q

q

-6 6

8

Three point charges, each of charge q = 2.0 × 10−6 C, are located
at (6, 8), (−6, 8), and at the origin of the above cartesian coordinate
system.

a. Calculate the electric potential at the point (0,8) due to these three
point charges.

b. Determine the electric field at the same point.

c. A fourth charge, Q = 4×10−6 C is placed at the point (0, 8) having
initially been infinitely distant from all other charge. Calculate the
change in the potential energy of the charge Q, due to the above
three charges.

3.
Q Qq

a a

q = +3.0× 10−6 C,

Q = +5.0× 10−6 C, a = 2.5m

a. Calculate the potential energy of the above assembly of charges.

21
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b. Calculate the new potential energy of the system if one of the Q’s
is interchanged (exchanged, switched) with q.

c. Use the work-energy principle to determine the work done by the
external agent which interchanged the charges in part (b).

Brief Answers:

1. See this module’s text.

2. See Problem 11 in this module’s Problem Supplement.

3. See Problem 12 in this module’s Problem Supplement.
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