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by

Peter Signell

1. Computer Program “Orbit”

1a. Overview. The computer program ORBIT uses the second-order
Numerov algorithm,1 to solve Newton’s second law for the case of a mass
m in the gravitational field of the earth.

You specify the mass’s initial coordinates x and y (in km), taking the
origin of the coordinate system to be at the center of the earth, and also
specify the mass’s initial velocity vector in terms of its angular orientation
and speed. The direction of the velocity vector must be specified in de-
grees, measured counterclockwise from the positive direction of the x-axis,
and the speed must be in km/s. A typical input and its corresponding
pictorial representation are shown in Fig. 1. The program ORBIT auto-

1For details see “Derivation of the Numerov Algorithm in Two Dimensions for
Satellite and Planetry Orbits” (MISN-0-104).
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Figure 1. Graphed output for these input values:
ENTER X(KM)? -6667
ENTER Y(KM)? 0

ENTER THETA(DEG)? 90
ENTER V(KM/SEC)? 8.357924
ENTER DELTA(SEC)? 2

MAX T(SEC)? 5040
PRINT EVERY Nth: N? 100
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matically puts in the earth’s mass and the gravitational constant in SI
units and then solves the differential equation of motion,

~F

m
= ~a =

d2~r

dt2
= −

GmE

r2
r̂ , (1)

for the position of the mass at the ends of successive time-intervals ∆
(“DELTA” in Fig. 1). The program ORBIT does not (in general) print
out all the net-point time values you make it calculate. Rather, it tells
you it will print out each nth value, then asks you for your choice of “n.”
The time interval ∆ determines the accuracy of the numerical solution:2

• If ∆ is too large, the solution will be inaccurate due to the finite-
interval computer algorith being a poor approximation to the dif-
ferential equation.

• If ∆ is too small, the solution will be inaccurate due to the sub-
traction of numbers have too many agreeing digits because of finite
computer word lengths.

A typical value of ∆ usually good for almost-3-digit accuracy is shown in
Fig. 1.

1b. Input and Output. We ask you to input whatever initial values
for x, y, θ, v, n, and ∆ you wish. You should make 3 runs which differ
only in the values used for v. Choose your three values to produce:

1. a circular orbit: v2 = GmE/r,

2. an elliptical orbit: GmE/r < v2 < 2GmE/r, and

3. a hyperbolic trajectory: 2GmE/r < v2 < ∞.3

Be sure that your output for case (2) really looks like an eccentric
ellipse, not a circle. Plot each of the three sets of points on the same piece
of graph paper and connect the points in each set with a smooth curve.
Extend the hyperbolic curve backwards in time by making an identical
run but with negative values of ∆ or with the velocity vector reversed.

2For a more detailed discussion of how ∆ is related to the accuracy, see MISN-0-104.
3The shape of orbits is discussed in “Derivation of Orbits in Inverse Square Law

Force Fields” (MISN-0-106).
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hyperbola: v =2.7Gm /r2
E

circle:

v =Gm /r2
E

ellipse:

v =1.68Gm /r2
E

Figure 2. The three types of orbit about the earth. The
distance scale is approximately 1: 2,500,000. The time incre-
ments are 18-1/3 minutes.

1c. Running the program. To actually run the program ORBIT you
must first download it to your computer. Do that by going to the CBI
Web site:

physnet2.pa.msu.edu

and then follow this path:

Reference Shelf ⇒ Optional Units ⇒ m105-p.bas

Clicking on the link M105-p will cause a window to appear in which you
select the directory on your computer to which you want the program
to be downloaded. A temp directory might be a good choice. After
selection, go ahead and cause the program to be downloaded. Then go to
that directory and run the program using the directions in MISN-8-100
(also downloadable).

2. Interpret the Graphs

2a. Circular Orbit is Circular. Check the radius of the various
points along the trajectory and comment on the extent to which the radius
stays constant, as it must for a circle.

2b. Elliptical Orbit is Symmetric. Holding the graph paper so the
earth is at the left focus of the ellipse, the elliptical orbit has exact left-

7
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earth

Figure 3. The two sectors are equal for
equal time intervals.

right mirror symmetry. One way to show this is to make a vertical fold
through the center of the ellipse and hold the graph paper up to the light.

2c. Velocities Do Not Show Mirror Symmetry. Despite the left-
right spatial symmetry of the orbit, the velocity is very different on the
left and right sides of the orbit. The speed of the satellite is greatest
at the point closest to the earth, the perigee4 and is least at the point
farthest from the earth, the apogee.5 The speed is inversely proportional
to r because the angular momentum of the satellite (~L = m~r × ~v) is
conserved in this isolated system (there are no external torques).

2d. Orbit is Indeed an Ellipse. The elliptical-looking orbit really
is an ellipse with the earth at one focus (Kepler’s first law). One way to
show this is to locate the other focus by use of the left-right symmetry,
then show that the total distance measured from one focus to any point
on the orbit, and then from there to the other focus, is the same for all
points on the orbit (using a ruler, check several such paths from one focus
to the other via a point on the orbit). Another way is to show that the
points on the orbit obey the equation

(x

a

)2

+
(y

b

)2

= 1 , (2)

which is the Cartesian form for the equation of the ellipse centered at the
origin. Show that the equation holds for several points on the orbit. Note
that this x and y are not the same as those printed out by ORBIT, since
they refer to a different origin. Note that for this equation: y = 0 when
x = ±a and x = 0 when y = ±b.

2e. Equal Areas Swept Out in Equal Times. According to Ke-
pler’s second law, the position vector sweeps out equal areas in equal
times. One way to show this is to draw two sectors, a short fat one near
the earth and a long thin one for the part of the orbit farthest from the

4Pronounced “pear′-ah-jee”.
5Pronounced “ap′-a-jee”.
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earth (see Fig. 3). Count the graph paper squares in each sector to deter-
mine the two areas, estimating fractions of squares. Show that the two
equal-time sectors have equal areas.

2f. Kepler’s Third Law. Kepler’s third law states that, for the circu-
lar and elliptical orbits, the squares of the periods are proportional to the
cubes of the semi-major axes6 of the orbits. You can estimate the satel-
lite’s period from the number of time intervals it takes for a complete
orbit of the earth.

Acknowledgments
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Glossary

• mirror symmetry: a property of an object or a system where there
exists a plane bisecting the object or system for which a point on one
side of the plane has an equivalent point on the other side.

A. Basic to Calculate Orbits

’
’ PROGRAM TO TRACE AN ORBIT IN AN INVERSE SQUARE FORCE
’ (9/30/99)
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

’
’ −−> LIST OF PROCEDURES <−−

’
80 GOSUB 200 ’INITIALIZATIONS

GOSUB 320 ’INPUT INITIAL VALUES
GOSUB 1050 ’OUTPUT QUERY
IF PRINT$ = ”Y” THEN GOSUB 510 ’PRINT INIT VALS
GOSUB 620 ’LOOP OVER TIMES
’

6The semi-major axis of an ellipse is the distance from its center to either of the
two furthest points from the center.
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INPUT ”WANT ANOTHER RUN (Y/N)”; ANS$
IF ANS$ = ”y” OR ANS$ = ”Y” THEN

CLS : PRINT : GOTO 80
’
END

’
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

200 ’INITIALIZATIONS
DIM A(4), B(4), C(4)
DEFINT N
PI = 3.14159
SP = SQR(.5): G.M = 6.979 ∗ 6.6732 ∗ 10 ˆ 4
RAD.TO.DEG = 180 / 3.14159
A(1) = .5: B(1) = 2: C(1) = .5
A(2) = 1 − SP: B(2) = 1: C(2) = 1 − SP
A(3) = 1 + SP: B(3) = 1: C(3) = 1 + SP
A(4) = 1 / 6: B(4) = 2: C(4) = .5
’
RETURN
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

320 ’INPUT INITIAL VALUES
’
CLS
PRINT ”REFER TO UNIT 105 FOR TERMINOLOGY”
PRINT
PRINT ”IN RESPONSE TO EACH OF THE FOLLOWING QUERIES,”
PRINT ” TYPE IN YOUR NUMBER,”
PRINT ” THEN HIT THE <RETURN> KEY.”
PRINT
INPUT ” x(km)”; X0
INPUT ” y(km)”; Y0
INPUT ”theta(deg)”; V.ANGLE.IN
INPUT ” v(km/sec)”; V0
INPUT ”delta(sec)”; DELTA.T
INPUT ”max t(sec)”; MAX.TIME
INPUT ”Print every N−th point. What is N”; N.PRINT
V.ANGLE = V.ANGLE.IN / RAD.TO.DEG
’
RETURN
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

510 ’PRINT THE INITIAL VALUES

10



MISN-0-105 7

’
LPRINT ” x(km):”; X0
LPRINT ” y(km):”; Y0
LPRINT ”theta(deg):”; V.ANGLE.IN
LPRINT ” v(km/sec):”; V0
LPRINT ”delta(sec):”; DELTA.T
LPRINT ”max t(sec):”; MAX.TIME
’
RETURN
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

620 ’BEGIN LOOP OVER TIMES
’
X = X0: Y = Y0: VX = V0 ∗ COS(V.ANGLE):
VY = V0 ∗ SIN(V.ANGLE)
QX = 0: QY = 0: RX = 0: RY = 0: T = 0
CLS
PRINT ” T X Y R ANGLE”
IF PRINT$ = ”Y” THEN

LPRINT ” T X Y R ANGLE”
NO.POINT = 0
GOSUB 1160 ’ get polar angle ’R.ANGLE’ from X and Y.
R = SQR(X ∗ X + Y ∗ Y)
GOSUB 1250 ’PRINT OUTPUT
’
FOR TIME = DELTA.T TO MAX.TIME STEP DELTA.T
NO.POINT = NO.POINT + 1
FOR J = 1 TO 4
KX = A(J) ∗ (VX − B(J) ∗ QX)
KY = A(J) ∗ (VY − B(J) ∗ QY)
X = X + DELTA.T ∗ KX
Y = Y + DELTA.T ∗ KY
’
GOSUB 1160 ’ get polar angle ’R.ANGLE’ from X and Y
’
R = SQR(X ∗ X + Y ∗ Y)
G.M.OVER.R.CUBE = G.M / (R ∗ R ∗ R)
AX = −G.M.OVER.R.CUBE ∗ X
AY = −G.M.OVER.R.CUBE ∗ Y
QX = QX + 3 ∗ KX − C(J) ∗ VX
QY = QY + 3 ∗ KY − C(J) ∗ VY
PX = A(J) ∗ (AX − B(J) ∗ RX)
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PY = A(J) ∗ (AY − B(J) ∗ RY)
VX = VX + DELTA.T ∗ PX
VY = VY + DELTA.T ∗ PY
RX = RX + 3 ∗ PX − C(J) ∗ AX
RY = RY + 3 ∗ PY − C(J) ∗ AY
NEXT J

’
IF TRACE = 0 THEN LOCATE , 1
’
N.OUT = INT(NO.POINT / N.PRINT) ∗ N.PRINT
IF N.OUT = NO.POINT THEN GOSUB 1250 ’PRINT OUTPUT
’
NEXT TIME

PRINT
’
RETURN
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1050 ’OUTPUT QUERY
’
PRINT

1080 PRINT ”OUTPUT WILL GO TO SCREEN AUTOMATICALLY.”
INPUT ” OUTPUT TO PRINTER AS WELL (Y/N)?”; PRINT$
PRINT
IF PRINT$ = ”y” THEN PRINT$ = ”Y”
IF PRINT$ = ”n” THEN PRINT$ = ”N”
IF PRINT$ <> ”Y” AND PRINT$ <> ”N” THEN GOTO 1080
’
RETURN
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1160 ’CALCULATE POLAR ANGLE FROM X AND Y
’
IF X > 0 AND Y > 0 THEN R.ANGLE = ATN(Y / X)
IF X < 0 AND Y >= 0 THEN R.ANGLE = PI + ATN(Y / X)
IF X < 0 AND Y < 0 THEN R.ANGLE = PI + ATN(Y / X)
IF X > 0 AND Y < 0 THEN R.ANGLE = 2 ∗ PI + ATN(Y / X)
’
RETURN
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1250 ’PRINT OUTPUT
’
R.ANGLE.OUT = R.ANGLE ∗ RAD.TO.DEG

12
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PRINT USING ”###### ”; TIME; X; Y; R; R.ANGLE.OUT
IF PRINT$ = ”Y” THEN

LPRINT USING ”###### ”; TIME; X; Y; R; R.ANGLE.OUT
’
RETURN
’−−−−−−−−−−−−−− END OF PROGRAM LINES −−−−−−−−−−−−−−−−−−−
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LOCAL GUIDE

1. Before going to the microcomputer, compute the velocity ranges
for the three types of orbit. You will probably wish to use a sci-
entific calculator for this. Also write down the values of the other
parameters you will have to enter into the micro (see Fig. 1).

2. Follow the directions given in “CBI on University Microcomputers,”
(MISN-8-100). The name of the computer program is ORBIT.EXE.
Be sure to use values for the initial position and speed of the satellite
that are different than the sample input used in Fig. 1.

3. When you have finished the computer runs, plot the x-y points on
the piece of graph paper and connect the points with smooth curves.
Mark all of the time net-points on the graphs as in Fig. 2.

4. Interpret the various characteristics of the resulting orbits and tra-
jectories in terms of symmetries, conservation of angular momentum
and Kepler’s laws, as detailed in the module text.

5. Submit your computer output, single sheet of graph paper with the
three plots, and the appropriate interpretations described in Step
4, when you take the exam on this unit. There will be no other
requirements on the exam.
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