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THE NUMEROV ALGORITHM

FOR SATELLITE ORBITS

by

Peter Signell

1. Introduction

Many problems in science and engineering cannot be solved in terms
of known functions,even when the underlying equation is known. Such a
problem is the position as a function of time along a satellite orbit or, for
that matter, along the earth’s orbit around the sun. For such cases, one
must resort to approximate numerical techniques; one such technique is
examined in this module.

2. The Equation of Motion

2a. Newton’s Second Law Plus the Law of Gravitation. We
will numerically determine the trajectory of a satellite in the field of a
single gravitational source, such as the earth. The equation governing
such motion can be obtained by combining Newton’s Second Law,1

~F = m
d2~r(t)

dt2
≡ m~r ′′(t),

with Newton’s Law of Gravitation,2

~F = −
GmmE

r2(t)
r̂(t).

We get:

~r′′(t) = −
GmE

r2(t)
r̂(t) = −

GmE

r3(t)
~r(t).

Here r(t) is the time changing position vector of the mass m and r(t) is
the radially outward pointing unit vector at the position of the mass at

1The number of primes will indicate the order of the derivative with respect to time
in this module.

2See “Newton’s Law of Gravitation” (MISN-O-101).

5

MISN-0-104 2

y-axis

x-axis

r̂

q

r
`

y

x

Figure 1. The vectors used to de-
fine a particle’s position.

time t.3 The origin of the coordinate system has been placed at the force
center.4

2b. The Equation in Cartesian Coordinates. We can write the
above vector equation in Cartesian component form by writing ~r in terms
of Cartesian unit vectors x̂ and ŷ:

~r(t) = x(t) x̂ + y(t) ŷ.

The reason for going over to Cartesian coordinates is that x̂ and ŷ are
independent of time whereas r(t) is not.That is, x̂ and ŷ form a time-
independent reference system. Then taking components and writing the
magnitude of ~r in terms of x̂ and ŷ,

|~r(t)|2 = x2(t) + y2(t),

we get the x̂ equation:

x′′ = −
GmE

[x2(t) + y2(t)]
3/2

x(t) ≡ f(t)x(t).

Similarly for the y equation:

y ′′(t) = f(t) y(t).

3See “Kinematics: Circular Motion” (MISN-O-9).
4For most satellite problems the center of the Earth can be taken to be a fixed force

center. For the motion of the moon, however, that is insufficient due to its large mass.
The methods presented here still apply, but the Earth’s mass becomes replaced by the
mass of the total system. Other quantities require careful interpretation. For further
details, see “Two Body Kinematics and Dynamics” (MISN-O-45).
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Figure 2. A function x(t), specified at equally-spaced values
of t.

3. Second-Order Numerov Solution

3a. “Net-Point” Notation. We will here use the Numerov method
of solving equations involving derivatives. This method has the advan-
tage of being easily understandable, although it is less appropriate for
orbit problems than are some other less understandable methods.5 In the
Numerov method we deal with the solution functions, x(t) and y(t), as a
series of numbers at “net-point” times that are integrally spaced:

tn ≡ n∆.

This is illustrated in Figure 2 for x(t).

We now introduce a more succinct notation for the coordinate positions
at the net-point times:

xn ≡ x(tn) ≡ x(n∆),

yn ≡ y(tn) ≡ y(n∆),

and our equations become:

xn
′′ = fnxn, (1)

yn
′′ = fnyn,

where:
fn ≡ −GmE

(

x2
n + y2

n

)−3/2
.

5The Numerov method tends to allow errors to accumulate. This is all right if the
errors are both positive and negative so they tend to cancel out. However, for orbit
problems the errors tend to all have the same sign so a method like the Runge-Kutta
is better.
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3b. Finite Difference Approximation. We will now connect the
consecutive values of x and y by using the finite difference approximation
to any function’s g’s second derivative:

gn
′′ ≈ (gn+1 − 2gn + gn−1) /∆2. (2)

Equation (2) is the result of truncating the following series after the second
term:6

gn+1 + gn−1 = 2gn +∆2g′′n + (∆4/12)giv
n + . . . (3)

The truncation is justifiable to the extent that numerical values of Delta
will be small so that ∆4 will be insignificant compared to ∆2. Keeping
that in mind, we apply Eq. (2) to the x and y functions of Eq. (1) and get,
with a little rearrangement:

xn+1 = (2 +∆2fn)xn − xn−1. (4)

Similarly, the y-coordinate relation is:

yn+1 = (2 +∆2fn)yn − yn−1. (5)

Such truncation of the series at the second term results in an algorithm
that is referred to as “being of second order.”

¤ Derive Eq. (5).

3c. The Recurrence Relations. Remembering that fn =
−GmE(x

2
n + y2

n)
3/2, we see that knowledge of x0, y0, x1, and y1 will

enable us to compute x2 and y2. Then, using x1, y1, x2, and y2, we
can compute x3, and y3. This process can be repeated until x and y are
known at any time you wish. The relations in Eqs. (4)-(5) are thus called
“recurrence relations.” The only remaining problem is the specification
of x0, y0, xl and y1.

3d. Specifying Initial Position and Velocity. In order to spec-
ify the trajectory, we usually find it most practical to specify position
and velocity at some particular time. This means that we specify:
position: x0, y0.
velocity: x′0, y′0.

In order to convert x0, y0, x′0, y′0, into x0, y0, x1,

and y1, we subtract Eq.(2) at t = 0 to obtain:

x1 − x−1 = 2∆x′0, (6)

6See “Taylor’s Series for the Expansion of a Function About a Point” (MISN-O-4).
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while the t = 0 sum equations (4)-(5) are:

x1 = (2 +∆2f0)x0 − x−1. (7)

The unknown x−1 can be eliminated from Eq. (6) to give:

x1 = (1 + 2∆2f0)x0 +∆x0
′. (8)

Similarly,
y1 = (1 + 2∆2f0) y0 +∆y0

′. (9)

To summarize, we specify the initial position and velocity components,
x0, y0, x0

′, y0
′, and then use Eqs. (8) to obtain x1 and y1. These are

combined with x0 and y0 to start the recurrence relations (4)-(5).
7

4. Choice of Step Size

Finally, how do you know what size time interval ∆ to use? You
could attempt to assess the importance of successive terms in Eq. (3), but
a more reliable method is to decrease ∆ until the predicted trajectory
stabilizes. That is, until it does not change significantly when ∆ is made
even smaller.

5. Summary

The algorithm, then, consists of:

1. a recurrence relation;

2. two initial conditions; and

3. a method of assuring desired accuracy.
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