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ORBITAL MOTION IN AN

INVERSE-SQUARE-LAW FORCE FIELD

by

Paul M.Parker

1. Historical Overview

1a. Introduction. Since earliest recorded human history, the motion
of the planets in the heavens has attracted the attentions of the curious.
Against the background of the stars whose positions in the sky are fixed
relative to each other, the motions of the planets appear quite complicated
and much attention was given over the centuries to arriving at some sort
of explanation for this seemingly mysterious behavior of the planets.

1b. Copernicus Proposes a Heliocentric Solar System. It was
the Polish astronomer Nicolaus Copernicus (1473-1543) who advanced the
idea that all the then known planets were in orbit around a single star,
our sun. In this heliocentric view, the earth is merely one of a number of
sun-orbiting planets, not the center of the universe as it was in the then
widely accepted view of Claudius Ptolemy of Alexandria (2nd century
ad) and his successors. Copernicus discovered that from the heliocentric
point of view, the planets appear to orbit the sun smoothly and without
the puzzling intricacies that earth-bound observation introduces.

1c. Astronomical Observations Lead to Laws of Motion. The
Danish astronomer Tycho Brahe (1546-1601) spent most of his adult life
recording the motions of the planets with unprecedented accuracy. His
German disciple and colleague Johannes Kepler (1571-1630) continued his
work but unlike Brahe, Kepler enthusiastically accepted the heliocentric
theory of Copernicus. This eventually allowed him to extract from the
massive and accurate data available to him a set of three laws of planetary
motion of general validity.

2. Kepler’s Laws of Planetary Motion

2a. Kepler’s First and Second Laws. Kepler’s first law states that
all planets travel in elliptical paths with the sun at one of the two foci
of the ellipse.1 The second law states that the radius vector ~r between

1The data indicated that those ellipses were nearly circular, but true ellipses they
were.
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Figure 1. An illustration of Kepler’s
second law.

the sun and the instantaneous position of a planet “sweeps out” equal
amounts of area of ellipse in equal intervals of time. This means that if
the time it takes the planet to go from B to C in Fig. 1 is equal to the
time it takes the planet to go from D to E, the shaded areas in Fig. 1
will be equal. As a consequence, the further the planet is from the sun,
the slower it will move. The planet moves fastest at the perigee P (the
point of closest approach) and slowest at the apogee A (the point farthest
away from the sun). For the limiting case of a circle Kepler’s second
law requires the orbiting speed to be constant and the type of motion
therefore is uniform circular motion.

2b. Kepler’s Third Law. While the first and second laws apply to
each planet individually, the third law relates the motions of the planets
to each other. The law states that the periods T1 and T2 of two planets
are related to the mean radii R1 and R2 of their respective orbits by

T 2
1

T 2
2

=
R3

1

R3
2

. (1)

The period of an orbital motion is defined as the time required to complete
one orbit. The mean radius of an elliptic orbit is defined as the semi-major
axis of the ellipse, one half the distance between apogee and perigee. The
discovery of the third law, Kepler writes, was the culmination of seventeen
years of intensive work. “At last, the true relation ... overcame by storm
the shadows of my mind ... with such fullness of agreement ... that I at
first believed that I was dreaming.”
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3. Newton’s Interpretation

3a. Newton Applied His Law of Gravitation. Newton’s discovery
of the law of universal gravitation,

F = G
m1m2

r2
, (2)

naturally led him to investigate whether this type of force, when used
in the second law of mechanics, ~F = m~a, would provide the dynamical
explanation of the three kinematical laws of Kepler. Newton found that
indeed it did.

3b. Kepler’s Second Law Results From a Central Force. The
second law of Kepler is a consequence of the fact that the gravitational
force exerted by the sun and acting on a planet is a central force, i.e., at
all times directed along the radius vector and pointing toward the sun,
and not having at any time a component, however small, perpendicular to
the radius. A force of this nature cannot change the angular momentum
of the planet, mvr, around the sun. Therefore, conservation of angular
momentum requires that any decrease in v is compensated for by an
increase in r, and vice versa. This can be shown to require the exact
behavior specified by Kepler’s second law.

3c. Inverse-Square Force Yields Kepler’s First & Third Laws.
The first and the third laws require the force to be specifically an inverse-
square force, that is, its magnitude must vary as 1/r2. The detailed
proofs are beyond the scope of this module, but a proof of the third law
for circular orbits will be given in Section 4. It can be shown that a
compact object moving under the influence of a central, inverse-square
force will move on a path which is a conic section: a hyperbolic path
if the force is repulsive, and a circular, elliptic or parabolic path if the
force is attractive. Since the gravitational force is attractive, closed orbits
must therefore be elliptic (with the circular orbit as a special case). Open
orbits are parabolic, such as those of non-returning comets which pass
through the solar system only once. (Halley’s comet is a returning comet

m1 m2

r

F F

Figure 2. The gravitational attraction of
two masses.
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Figure 3. A satellite orbiting the earth.

which moves on a highly eccentric2 elliptic path.) Thus, Kepler’s first
law is a direct consequence of the gravitational force being central and
inverse-square.

4. Circular-Orbit Satellite Motion

4a. Overview. In this section, we will examine the motion of a satellite
orbiting a spherically symmetric, massive object under the influence of
the universal gravitational force. This could be the motion of a spaceship
orbiting the earth, or a spaceship orbiting another planet, moon, the sun
or another star. It could also be the motion of a moon orbiting its planet,
or the motion of a planet in (near) circular motion around the sun. We
will discuss this type of motion in terms of a spaceship orbiting the earth
but the discussion applies equally well to any other of the above situations.

4b. Gravity Provides The Centripetal Force. Let the satellite
move with uniform circular motion on a path of radius R, and therefore
a distance of (R − Re) above the surface of the earth. The centripetal
force acting on the satellite is the universal gravitational force exerted by
the earth and its magnitude must equal the satellite’s mass m times its
centripetal acceleration v2/R:

G
Mm

R2
=

mv2

R
. (3)

The mass of the satellite m can be cancelled which means that Eq. (3) is
valid for a satellite of any mass. Solving for v one obtains

v =

(

GM

R

)1/2

. (4)

2The words “highly eccentric” mean that the orbit is far from being circular.
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The period (time of one revolution) for uniform circular motion is

T =
distance for one revolution

speed during the revolution
=

2πR

v
, (5)

and using the expression for v from Eq. (4) gives

T = 2π

(

R3

GM

)1/2

. (6)

This shows that the square of the period of the satellite motion is propor-
tional to the cube of the radius R of the path, in agreement with Kepler’s
third law, at least for circular orbits. We can define an “acceleration due
to gravity at radius R from the center of the earth,” gR, and write (where
R > Re):

gR =
GM

R2
, (7)

This allows the expressions for v and T to be expressed in the more
compact forms

v = (gRR)
1/2

; T = 2π

(

R

gR

)1/2

, (8)

For a tightly orbiting satellite, say, a spaceship only a hundred miles
above earth, R ≈ Re = 6.37×106 m, gR ≈ g = 9.81m/s2, from which one
determines a period T of roughly ninety minutes and an orbital speed of
about 8 km/s. Note that for a given R, both v and T of the satellite’s
motion are fixed. As can be seen most directly from Eqs. (4) and (6), the
larger the orbit, the longer the period and the slower the speed.

4c. The Satellite Travels in Free-Fall. The spaceship and its pas-
sengers at all times experience an acceleration equal to the local acceler-
ation of gravity. They are therefore at all times in a free-fall condition
which is a condition equivalent to weightlessness. Note, then, that the
spaceship is weightless not because it is in some gravity-free space, which
it isn’t, but because it is accelerating freely in the very real gravitational
field of the earth.

5. Conclusion

5a. Planets May Perturb the Orbits of Neighbors. Extremely
refined calculations of planetary motions must take into account the sec-
ondary effects of the gravitational attraction of the planets on each other.
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Careful analysis of these small, so-called perturbations clears up remain-
ing discrepancies and allows the prediction of the positions of the planets
over the centuries with split-second accuracy. Such calculations led to the
prediction of the existence of two heretofore unknown planets and their
subsequent discovery, the planet Neptune in 1846 and the planet Pluto in
1930.

5b. Gravitational Mass vs. Inertial Mass. Some reflection shows
that mass, traditionally defined as the amount of matter contained in a
given object, appears in physics in two different aspects: (1) as the coeffi-
cient of inertia in Newton’s second law - the more massive an object, the
larger a force is required to produce a specified amount of acceleration;
and (2) as gravitational mass: the more massive an object, the larger a
gravitational force it exerts and experiences. There is no logical necessity
that the mass of an object when determined by inertial methods is, in the
same units, equal to the mass of the object when measured by gravita-
tional methods (for example, by weighing it). It is therefore meaningful
to ask whether the inertial mass of an object differs from its gravitational
mass, however small the difference may be. Experiments to answer this
question were first carried out by the Hungarian physicist Eötvös in 1909
and continued by others. All these experiments have so far shown that
there is no difference between inertial and gravitational mass to the accu-
racy of the experiments. The best accuracy on record is about one part in
1011. In other words, if there is a difference between the gravitational and
inertial mass of an object, it will not show up before the eleventh digit in
the measurement results! Therefore, the distinction between inertial and
gravitational mass is superfluous and no such distinction is required. The
equivalence between gravitational and inertial mass has been exploited
by Einstein in 1911 and forms the cornerstone of his general theory of
relativity which is primarily a theory of gravitation, constituting the first
significant advance since the days of Newton.
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Glossary

• apogee: the point of a satellite’s orbit furthest from the focus of its
elliptical path.

• central force: a force which is radial along the line joining the two
interacting systems.

• perigee: the point of a satellite’s orbit closest to the focus of its
elliptical path.

• conic section: a plane curve which may be obtained by cutting a
cross section of a cone. The possibilities include a circle, an ellipse, a
parabola, and a hyperbola.

• eccentricity: the ratio of the distance from the focus to a point on
a conic section, to the distance from a fixed straight line to the same
point on the conic section. The numerical value of the eccentricity, e,
determines what kind of curve the conic section is:

e > 1 =⇒ hyperbola

e = 1 =⇒ parabola

e < 1 =⇒ ellipse

e = 0 =⇒ circle
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PROBLEM SUPPLEMENT

Note: Problem 7 also occurs in this module’s Model Exam.

1 lb (force) = 4.448N; 1 km = 0.6214mi; 1 yr = 3.167×107 s

PHYSICAL AND ORBITAL DATA FOR THE SOLAR SYSTEM*

Mean Mean Orbital Orbital
Body Radiusc Mass Radius Period

(meters) (kg) (meters) (seconds)

Sun 6.96×10
8 1.99×10

30 - - - - - - - - - - - -
Mercurya 2.43×10

6 3.30×10
23 5.79×10

10 7.60×10
6

Venusa 6.06×10
6 4.87×10

24 1.08×10
11 1.94×10

7

Earth 6.37×10
6 5.98×10

24 1.50×10
11 3.16×10

7

Marsa 3.37×10
6 6.40×10

23 2.28×10
11 5.94×10

7

Jupiter 6.99×10
7 1.90×10

27 7.78×10
11 3.74×10

8

Saturn 5.84×10
7 5.69×10

26 1.43×10
12 9.30×10

8

Uranus 2.30×10
7 8.73×10

25 2.87×10
12 2.65×10

9

Neptune 2.22×10
7 1.03×10

26 4.50×10
12 5.20×10

9

Pluto < 3× 10
6

< 6× 10
23 5.90×10

12 7.82×10
9

Moonb 1.74×10
6 7.35×10

22 3.84×10
8 2.36×10

6

*Data adapted from the Explanatory Supplement to the Astronomical Ephemeris
and the American Ephemeris and Nautical Almanac, Her Majesty’s Stationery
Office, London (1961). Notes: aRadius obtained from radar observations, mass
from space probe perturbations. bOrbital data are with respect to the earth.
cRadius of a sphere of equal volume.

1. Phobos, a moon of Mars, travels in a circular orbit of radius 9.4×106 m
about that planet. Starting from the law of universal gravitation,
calculate Phobos’s:

a. orbital speed

b. period of revolution

c. centripetal acceleration

2. Using the law of universal gravitation and assuming circular orbits
with the heavier body fixed at center of the circle, calculate the period
of revolution (in days) of:

12
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a. the earth about the sun

b. the moon about the earth.

Compare your values to those in the table, which are: (a) a year; and
(b) a lunar month.

3. Find the orbital speed of a satellite in orbit 200 km above the earth.

4. Calculate the shortest possible period of revolution for a spaceship
orbiting:

a. the earth

b. the moon.

5. What is the shortest period of revolution for a satellite revolving about
a planet whose radius is 1.0 × 103 km and whose surface value of g is
5.0m/s2? Calculate the orbital speed and centripetal acceleration of a
satellite 1.0× 102 km above the planet’s surface.

6. Find the distance above the earth’s surface (in earth radii) a satellite
orbiting in the earth’s equatorial plane3 must be in order for it to be
stationary above a certain location at all times. (If the orbit does
not lie in the equatorial plane, the satellite will still be in the same
location every day at a given time of day - a very useful property for
a communications satellite.)

7. A spacecraft is in a circular orbit about the moon, 8.0 × 101 miles
above the moon’s surface. Starting from Newton’s law of universal
gravitation, calculate the spacecraft’s:

a. orbital speed,

b. period of revolution,

c. centripetal acceleration.

Do not use a remembered value for the universal gravitational constant
G. Instead, use your instant-recall value of g at the earth’s surface and
the radius of the earth (in the Solar System Data Table) to find G.
Help: [S-4]

3The earth’s equatorial plane is the plane that includes the earth’s equator.
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Brief Answers:

1. a. v = 2.13× 103 m/s.

b. T = 2.77× 104 s = 7.69 hr

c. a = 0.483m/s2 , radially inward.

2. a. T = 3.17× 107 s = 367 days (1 yr.= 3.16× 107 s).

b. T = 2.37× 106 s = 27.4 days (lunar month= 2.36× 106 s).

3. 7.79× 103 m/s.

4. a. T = 5.06× 103 s = 84.3min. Help: [S-1] 4

b. T = 6.52× 103 s = 109min. Help: [S-1]

5. T = 2.8× 103 s,

v = 2.1× 103 m/s, Help: [S-3]

a = 4.1m/s2. Help: [S-3]

6. 5.6 radii above the earth’s surface. Help: [S-6]

7. a. 1.62× 103 m/s. Help: [S-5]

b. 7.25× 103 s. Help: [S-5]

c. − (1.40m/s2) r̂. Help: [S-5]

4The symbol [S-1] means that if you have trouble getting the answer you can get
help from sequence [S-1] in this module’s Special Assistance Supplement.
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS, problem 4)

Remember the equations that make up Eq. (3), use them to derive
Eq. (6), note that minimum T means minimum R. What is the mini-
mum R for a satellite orbiting the earth? For one orbiting the moon?
Help: [S-2]

S-2 (from [S-1])

It would make no sense to design an orbit that is below ground level!

S-3 (from PS, problem 5)

Rp = 1.0× 106 m; R = 1.1× 106 m.
g = 5.0m/s2.

gR =

(

Rp

R

)2

g = 4.1m/s2.

vR =
√
gR R = 2.1× 103 m/s.

S-4 (from PS, problem 7)

The derivation of G from g and Re is shown in this module’s text.

S-5 (from PS, problem 7)

Orbital speed, orbital period, and centripetal acceleration are all cov-
ered adequately (for this problem) in this module’s text. For a more
elementary discussion of these quantities, see the Index.

S-6 (from PS, problem 6)

What is the orbital period of all points on the surface of the earth?
Then what is the orbital period of the satellite if it stays above a point
on the surface of the earth?

15
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S-7 (from [S-5])

A question: How far is the satellite from the center of the moon?

16
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MODEL EXAM

PHYSICAL AND ORBITAL DATA FOR THE SOLAR SYSTEM*

Mean Mean Orbital Orbital
Body Radiusc Mass Radius Period

(meters) (kg) (meters) (seconds)

Sun 6.96×10
8 1.99×10

30 - - - - - - - - - - - -
Mercurya 2.43×10

6 3.30×10
23 5.79×10

10 7.60×10
6

Venusa 6.06×10
6 4.87×10

24 1.08×10
11 1.94×10

7

Earth 6.37×10
6 5.98×10

24 1.50×10
11 3.16×10

7

Marsa 3.37×10
6 6.40×10

23 2.28×10
11 5.94×10

7

Jupiter 6.99×10
7 1.90×10

27 7.78×10
11 3.74×10

8

Saturn 5.84×10
7 5.69×10

26 1.43×10
12 9.30×10

8

Uranus 2.30×10
7 8.73×10

25 2.87×10
12 2.65×10

9

Neptune 2.22×10
7 1.03×10

26 4.50×10
12 5.20×10

9

Pluto < 3× 10
6

< 6× 10
23 5.90×10

12 7.82×10
9

Moonb 1.74×10
6 7.35×10

22 3.84×10
8 2.36×10

6

*Data adapted from the Explanatory Supplement to the Astronomical Ephemeris
and the American Ephemeris and Nautical Almanac, Her Majesty’s Stationery
Office, London (1961). Notes: aRadius obtained from radar observations, mass
from space probe perturbations. bOrbital data are with respect to the earth.
cRadius of a sphere of equal volume.

1. See Output Skills K1-K3 in this module’s ID Sheet. One or more of
these skills, or none, may be on the actual exam.

2. A spacecraft is in a circular orbit about the moon, 8.0 × 101 miles
above the moon’s surface. Starting from Newton’s law of universal
gravitation, calculate the spacecraft’s: (a.) orbital speed; (b) period
of revolution; (c) centripetal acceleration.

Do not use a remembered value for the universal gravitational constant
G. Instead, use your instant-recall value of g at the earth’s surface and
the radius of the earth to find G.

Brief Answers:

1. See this module’s text.
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2. See this module’s Problem Supplement, problem 7.
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