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1. Given impulsive forces on the surface of an object, write the equa-
tions for the changes in its center of mass momentum and angular
momentum (MISN-0-36).
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K1. Derive, in complete detail, the equations relating the linear and
angular velocities of a Superball before and after a collision with
a flat surface.

K2. Using the equations from Skill K1, give an example that demon-
strates a difference in what can happen when a Superball and a
smooth ball are bounced.
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ORDINARY AND SUPER-BALL BOUNCES
by
K. J. Franklin

1. Overview

Why does a Super-Ball' bounce so differently from an ordinary ball?
How can one predict its trajectory, given an initial position, velocity, and
spin? Here we help you answer those questions in a quite simple and
satisfying manner, albeit assuming that the ordinary ball’s bounce is fric-
tionless while the Super-Ball’s has lots of friction but no heat loss due to
skidding.? In each case, then, mechanical energy is conserved. We use this
and impulse relations to determine what a bounce does to a ball’s linear
and angular velocity components. Then we apply those velocity changes
again and again, bounce after bounce, to plot trajectories.

2. Velocity Relations for a Bounce

2a. Nomenclature, Impulse Equations. A ball before and after
a bounce can be described in terms of its linear velocity v and angular
velocity about its center of mass. Here we will orient an z-y plane to
coincide with the plane defined by the bounce so that v, = 0 (see Fig. 1).
We will also assume that any spin is about the z-axis. Under these cir-
cumstances the useful impulse equations, taken with respect to the ball’s
center of mass, are:3

Mv, = [ geie== [ g 1)

MAvy:/Atfydt:—/|fy|dt, 2)

ILAw = / T, dt = r/ | fo] dt, (upward bounce) (3)
At

1Registered trademark of the Wham-O Corporation, San Gabriel, CA.

2Possible reasons for this property of the Super-Ball are given by Garwin in “Super-
Ball Bounces,” R. L. Garwin, American Journal of Physics 37, 88 (1969). Garwin calls
this “ultraelasticity” and discusses many interesting trajectories. See also Classical
Mechanics, A Modern Perspective, V.Barger and M. Olsson, McGraw-Hill Book Co.,
NY (1953).

3For background, see “Momentum: Conservation and Transfer” (MISN-0-15)-and
“Rotational Motion of a Rigid Body” (MISN-0-36).
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where M is the mass of the ball, r is its radius, I, is its moment of inertia
about the z-axis through its center, 7, is the torque exerted on it about
that axis, and it is the time interval it spends in contact with the floor.
Note that a gravity impulse has not been included: its net effect is zero.
For a perfectly smooth (frictionless) ball, f, is zero. For the Super-Ball,
with a high coefficient of surface friction, f, is not zero.

2b. Conservation of Energy. We assume that neither the ordinary
ball nor the Super-Ball loses mechanical energy during a collision. The
collision forces are thus conservative and we can write:

1 2 1 2

S M(v))? = S0, (4)
1 1 1 1
§IZ(WI)2 + 5M('U;J)2 = 5 sz + §M’Ug . (5)

These equations can be obtained, if desired, by integrating Egs. (1) - (3),
first noting that the net gravitational impulse is zero and that the fric-
tional impulse can be eliminated by combining Egs. (1) and (3). Strict
conservation of mechanical energy is only an approximation to what hap-
pens in the real world, but it is sufficiently accurate for our purposes.*

2c. The Equations to Be Solved. In order to solve Eq. (5) we must
find a second relationship between the two unknowns, v,/ and w’. A conve-
nient relationship is obtained by eliminating the integral between Egs. (1)
and (3). Doing this, and substituting the value of I, for a homogeneous

4See Garwin’s article, cited earlier.
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ball,> I, = (2/5)Mr?, we get the equations to be solved for an upward
bounce:

ve® = vy, (6)
v — 0} = (2/5)(r?)(w? — w'?), (7)
v — vy = (2/5)(r)(w —w'). (8)

2d. Solutions to the Vertical Equation. Equation (6) has the im-
mediate solutions v, = £v,. Since the ball cannot continue through the
surface, as it would have to for v,/ = v, v is required to change sign:

vy = —uy. 9)

2e. Solutions to the Horizontal Equations. The horizontal equa-
tion (7) is quadratic, so there will be two solutions. One simultaneous
solution to (7) and (8) can be obtained by inspection:

Ve = Vg, (10)
o =w. (11)
An easy way to find the other solution is to factor each side of (7) into
products of sums and differences, then to use (8) to simplify it. The

resulting linear equation can then be easily solved simultaneously with
the linear equation (8). The result is (for an upward bounce):

v = (3/T)va + (4/Trw, (12)

W= (=3/T)w+ (10/7)v, /7. (13)

The horizontal angular velocity changes, (10) and (11) or (12) and (13),
along with the vertical velocity change, (9), give us all possible upward-

bounce trajectories consistent with conservation of energy and the impulse
equations.

3. Trajectories, Successive Bounces

3a. The Ordinary Ball. The ordinary ball is assumed to have a
frictionless surface, so its upward-bounce equations are (9), (10) and (11),
not (9), (12) and (13). For the downward bounce under the table, you
can rework Egs. (3) and (8), and find a change of sign in each. We find it
helpful to make a downward-bounce sketch similar to Fig. 1. Equations
(10) and (11) are found to be unchanged. Application of the appropriate
equations to successive bounces results in the trajectory shown in Fig. 2.

5See “Calculation of Moments of Inertia” (MISN-0-35).
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Figure 2. Successive bounces of an ordinary ball, assumed
smooth. The missing second-leg situation can be filled in by
use of Egs. (9), (10) and (11).

3b. The Super-Ball Challenge. Suppose a Super-Ball is given the
same first leg as in the trajectory shown in Fig. 2. What will its next three
legs look like? Before turning the page and finding out, why not see if
you can determine the trajectory yourself and sketch it properly. Watch
out, though. Egs. (3), (12) and (13) are only valid for an upward bounce.
The second bounce is downward, so you must rework the equations for
that case. This alters the right side of equation (3) and the second terms
on the right side of equations (12) and (13). In calculating the v,’s and
w’s after each successive bounce, we suggest that you put them in terms
of the symbol v,, which represents the z-component of velocity on the
very first leg.

> Try it before turning the page!
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Figure 3. Successive bounces of a Super-Ball, assuming no
sliding during a bounce. The rotation is as in Fig. 2.
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3c. The Superball. Surprise! A Super-Ball, thrown to the floor
in front of a table, comes back to you and picks up spin! The basic
downward-bounce equation is just:

IZAw:/ Tzdt:—’l’/ |fz| dt. (14)
At At

and this leads to these characteristics after the third bounce:

v = (—333/343)v,; W' = (—130/343) (v /7).

x
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PROBLEM SUPPLEMENT

1. A Super-Ball with positive spin w is dropped from a height h onto the
floor. Determine its angle of rebound and sketch the situation. Check
the angle as w — 0 and oo; as h — 0 and co. What happens if the ball
is again dropped, this time with opposite spin?

2. Find the relationship between w and v, such that a Super-Ball has
a repeating single-leg trajectory between bounces. If the peak of the
arcing trajectory is a height h above the floor, what is the ball’s angle
of rebound at each of the two bounce points? Sketch the situation.
Check w and v, after the first and second bounce.

3. Other examples can be found in Garwin’s article, cited in the text.

Brief Answers:

1. 6 =tan"! [(4/T)rw/\2gR] .

2. w=—(5/2)(vy/r); 6 =tan"! [—(10/7)vm/\/297h] to vertical ;

W=—-w=w; v = —v] =wv,.

10
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MODEL EXAM

4 1
vy = %vm + oW W= fgw + 70(%/7“)

1. See Output Skill K1 in this module’s ID Sheet.
2. See Output Skill K2 in this module’s ID Sheet.

Brief Answers:

1. See this module’s text.

2. See this module’s text.
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