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Input Skills:

1. Describe the time-average steady state power transferred into a
damped driven oscillator from its driving force (MISN-0-31).

2. Plot pole trajectories of any given reciprocal of a quadratic func-
tion (MISN-0-59).

Output Skills (Knowledge):

K1. Suppose there is a narrow resonance in a physical system and state
what measurements you could make in order to determine the
approximate locations of the nearby poles. State the conditions
under which the approximate locations are accurate.

Output Skills (Rule Application):

R1. Sketch complex-plane pole trajectories for given single functions
of frequency.

R2. Given the observed width and position of a resonance, determine
the approximate position of a nearby pole.
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RESONANCES AND POLES;

REAL AND IMAGINARY WORLDS

by

Peter Signell

1. Locating the Poles

It can be shown that the time-average steady-state power fed into a
damped driven oscillator is:1

Pave(ω) =
F 2

0 ω
2
0γ/m

(ω2
0
− ω2)2 + 4γ2ω2

, (1)

where ω is the driving frequency (hence the frequency of oscillation of the
oscillator), F0 is the amplitude of the sinusoidal driving force, ω0 is the
frequency of the oscillator when undamped and undriven, and γ is the
damping constant. If we consider the frequency of oscillation ω to be a
complex variable, then the denominator can be factored (zeros found) by
applying the quadratic root formula with ω2 as the variable. Then the
roots of the denominator, ωp, are solutions to:

ω2

p = −2γ2 + ω2

0 ± 2i
√

ω2
0
− γ2 .

In turn, the square root of ω2
p gives the actual roots:

ωp = ±
√

ω2
0
− γ2 ± iγ . (2)

¤ Square this to prove that it is indeed the square root.

We can now write:

Pave(ω) =
F 2

0 ω
2 γ/m

(ω − ω1)(ω − ω2)(ω − ω3)(ω − ω4)
, (3)

where the four ω’s are the four values one obtains with the four possible
sign combinations in Eq. (2). At each of these roots of the denominator
the value of P becomes infinite so P is said to have a simple pole there.
The pole locations have an obvious symmetry (see Fig. 1). Note that the
radius vector to any pole has the length:

√

(Re{ωp})
2
+ (Im{ωp})

2
= ω0 ,

1See “Damped Driven Oscillations; Mechanical Resonances” (MISN-O-31).
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Figure 1. Pole positions are shown by +’s.

which is independent of the amount of damping in the system. Thus as
you increase the damping the poles trace out trajectories which are arcs
of circles of constant radius ω0.

¤ Plot these arcs on the graph above.

¤When you reach γ = ω0 the poles are all on the imaginary axis. Where
do the trajectories go as you continue to increase γ beyond ω0?

¤What happens as γ →∞?

¤ How do these trajectories correlate with under damping, critical damp-
ing and overdamping?2 We now go back to the small-damping case,
γ ¿ ω0, where the poles in the first and fourth quadrants have the posi-
tions:

ω1,4 =
√

ω2
0
− γ2 ± γ ' ω0 ± iγ .

In this case the real parts of these pole positions are both very close to
the resonant frequency ω0, as shown in Fig. 1.

2 See “Damped Mechanical Oscillations” (MISN-0-29).
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Figure 2. Definitions of resonance parameters.
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2. Resonance Width

The width Γ of the resonance at half-maximum can be deduced by
writing:

P (ω0 ± Γ/2) =
1

2
P (ω0) . (4)

The resonance parameters are illustrated in Fig. 2.

For the case γ ¿ ω0, the resonance will turn out to have a width Γ
which is very small compared to the resonant frequency ω0 so that the
denominator of P (ω0 + Γ/2) can be written:

[ω2

0 − (ω0 ± Γ/2)2]2 + 4γ2(ω0 ± Γ/2)2 ' ω2

0(Γ
2 + 4γ2) .

Putting this and ω2 ' ω2
0 into (4) yields:

F 2
0 ω

2
0γ/m

ω2
0
(Γ2 + 4γ2)

=
1

2

F 2
0 ω

2
0γ/m

4γ2ω2
0

.

for which the solution is γ = Γ/2. Incidentally, this result confirms that
for small damping, γ ¿ ω0, we have a narrow width: Γ¿ ω0.

Then the imaginary parts of the pole positions for γ ¿ ω0 are given
by the half-width at half-maximum of the observed resonance. Thus as
damping is made smaller (γ smaller), the poles approach the real axis
from each side and the resonance gets narrower and higher.

The Appendix shows you the case: γ = 0.209ω0.

¤ In the Appendix figures, color the Im{ω} axis red, the vertical surface
along the positive Re{ω} axis blue.
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Figure 3. Definitions of the three axes for Figures
4 and 5.

A. Pictures of Poles and Resonances

Figure 4. Pave(ω). The surface has been removed for
Im{ω} > 0.
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Figure 5. As in Fig. 3, but entire surface shown.
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PROBLEM SUPPLEMENT

These problems also occur on this module’s Model Exam.

1. Locate the poles of: F (ω) =
a2

(ω − ω0)2 + a2
.

2. Sketch the pole trajectories resulting from variations of the parameter
a in problem (1).

3. For the above case, determine the relations between the pole positions
and the resonance width and position.

4. If there is a narrow resonance in a physical system, state what measure-
ments you could make in order to determine the approximate locations
of the nearby poles. State the conditions under which the approximate
locations are accurate.

Brief Answers:

1. Solve the denominator for ω.

2. Your plot should show the two poles fleeing the real axis in opposite
directions along a single straight line as a is increased.

3. You should find, good for all values of a: Γ = 2 Im{ωp}, and ωres =
Re{ωp}.

4. See this module’s text, and think about it.
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MODEL EXAM

These problems also occur in this module’s Problem Supplement.

1. Locate the poles of: F (ω) =
a2

(ω − ω0)2 + a2
.

2. Sketch the pole trajectories resulting from variations of the parameter
a in problem (1).

3. For the above case, determine the relations between the pole positions
and the resonance width and position.

4. If there is a narrow resonance in a physical system, state what measure-
ments you could make in order to determine the approximate locations
of the nearby poles. State the conditions under which the approximate
locations are accurate.
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