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Input Skills:

1. Write the differential equation of motion for the damped driven
oscillator and distinguish between the transient and steady-state
solutions (MISN-0-31).

Output Skills (Knowledge):

K1. Define the Laplace Transform of a function of a single variable and
state the conditions under which the transform exists.

K2. Given the damping parameter λ, the driven function, and the
natural frequency ω0 = (k/m)1/2 of an oscillator, write down the
expression for the resultant force (as a function of time) acting on
the oscillator. Then, using Newton’s Second Law, find the second
order differential equation satisfied by the oscillator’s displacement
from equilibrium.

K3. Find the Laplace Transform of the damped, driven oscillator dif-
ferential equation and then the Laplace Transform of the solution
to this differential equation. Use the table of Laplace Transforms
to find the sought-after solution. (This solution may be left in
integral form).

Output Skills (Problem Solving):

S1. Evaluate the Laplace Transform of some given simple function
(constant, square pulse, sum of integer powers of the variable,
sine, cosine, and exponential).

S2. Calculate the Laplace Transforms of the derivatives of a function
whose Laplace Transform is given.

External Resources (Required):

1. A Table of Laplace Transforms. For availability, see this module’s
Local Guide.
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LAPLACE TRANSFORM FOR THE
DAMPED DRIVEN OSCILLATOR

by

J. S.Kovacs, Michigan State University

1. Introduction

1a. A Useful Method for Solving Differential Equations. The
Laplace Transform method for solving ordinary differential equations is
especially useful for finding the solutions to the differential equations gov-
erning the simple harmonic oscillator, the damped harmonic oscillator,
and the damped driven oscillator.1 This method reduces the differential
equation to an algebraic equation. The inverse Laplace Transform of the
solution to this algebraic equation is then the solution to the differen-
tial equation. Many engineers find this technique especially attractive for
solving the differential equations that they encounter.

2. Elementary Properties of the Laplace Transform

2a. Definition of the Laplace Transform. If F (t) is specified for
values of t > 0, then the Laplace Transform of F (t) is defined by:

Laplace Transform of F (t) for a value of s ≡ ∫∞
0

e−stF (t) dt

We write this as:

L{F (t)} ≡
∫ ∞

0

e−stF (t) dt.

The right side is a function of s, call it f(s). The Transform exists for
those values of s for which the integral converges.

2b. Laplace Transform of the Constant Function. Consider the
simplest F (t), a constant, call it A. Evaluating the transform integral:

f(s) = A

∫ ∞

0

e−stdt =
A

s

[−e−st
]t=∞
t=0

.

1These are phenomena for which Fourier Transforms, for example, do not exist.
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For s < 0 and for s = 0, this integral doesn’t converge (for negative s the
upper limit gets infinite) so f(s) exists only for values of s > 0, and

f(s) =
A

s
, (s > 0) .

2c. Laplace Transform of the Exponential Function. Another
example is F (t) = eat, where a is some constant:

f(s) =

∫ ∞

0

e(a−s)tdt.

If a > s the exponent is always positive and blows up as t gets infinite.
However, for s > a the integrand approaches zero for large t. The integral
is:

1

(a− s)
e(a−s)t

∣∣∣∣
t=∞

t=0

.

It is zero at the upper limit if s > a and finite at the lower limit (unless
s = a). Hence,

L{eat} =
1

s− a
, (s > a).

2d. Relating Sine and Cosine to Exponential. Sine/cosine trans-
forms can be related to exponential ones by:2

e±iat = cos at± i sinat ,

where i =
√−1. Adding and subtracting these relations gives you two

useful relations for the sine and cosine:

sin at =
1

2i
(eiat − e−iat) ,

cos at =
1

2
(eiat + e−iat).

2e. Exercises with Simple Functions. Using the above results, try
the following exercises.

� Find L{F (t)} for each of these functions:

(i) sinat

2See “Some Simple Functions in the Complex Plane” (MISN-0-59).

970



MISN-0-47 3

(ii) cos at

(iii) t
(iv) t2

(v)
F (t) = 0 if t < t0
F (t) = 1 if t0 < t < t1
F (t) = 0 if t > t1

⎫⎬
⎭ F(t)

t0 t1

1

0
0

t

The answers you get should be :

(i)
a

s2 + a2
, for s > 0

(ii)
s

s2 + a2
, for s > 0

(iii)
1

s2
, for s > 0

(iv)
2

s3
, for s > 0

Note: by induction, you can show that: L{tn} =
n!

sn+1
for positive

integer n.]

(v)
e−t0s

s

[
1− e−(t1 − t0)s

]

2f. Laplace Transform of Derivatives. What about the Laplace
Transform of dF (t)/dt and higher derivatives? You can, of course, evalu-
ate these directly if you know F (t). However, the Laplace Transform of
the derivatives of F (t) can be expressed in terms of the Laplace Transform
of F (t). Let’s look at the first derivative:

L{dF (t)

dt
} =

∫ ∞

0

e−st dF

dt
dt .

Using:
d

dt
[e−stF ] = F

de

dt

−st

+ e−st dF

dt
,
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the integral may be written:

∫ ∞

0

d

dt
[e−stF ]dt−

∫ ∞

0

d[e−st]

dt
Fdt .

The first integral is just e−stF (t), the second is:

s

∫ ∞

0

e−stF (t)dt,

which is: sL{F (t)}. Hence:

L
{
dF (t)

dt

}
= e−stF (t)

∣∣
t=∞ − e−stF (t)

∣∣
t=0

+ sL{F (t)}
= sf(s)− F (0) ,

where F (0) is the function F (t) evaluated at t = 0. Try this yourself for
the second derivative and show that:

L
{
d2F (t)

dt2

}
= s2f(s)− sF (0)− F ′(0) ,

where:

F ′(0) ≡ dF (t)

dt

∣∣∣∣
t=0

is the first derivative of F (t) evaluated at t = 0.

3. Solution for Damped Driven Oscillator

3a. Transform of Second Order Linear Differential Equation.
Now consider the second order differential equation:

mx′′(t) + λx′(t) + kx(t) = F (t),

where:

x′ ≡ dx(t)

dt
, and x′′ ≡ d2x(t)

dt2
.

You’ll recognize this as the differential equation of motion for the damped
driven oscillator. For example, a mass m at the end of a spring constant k
with damping coefficient λ which is being driven by an externally applied
force F (t). At any instant of time t, the net force on the mass m is
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F (t) − λdx/dt − kx.3 The quantities x′′(t) and x′(t) are the first and
second derivative of x(t), the displacement from equilibrium with respect
to the independent variable t,the time. If we divide by m our equation
becomes:

x′′ + 2γx′ + ω2x = G(t) .

Here: 2γ ≡ λ

m
, ω2 ≡ k

m
, G(t) ≡ F (t)

m

Taking the Laplace Transform of both sides yields:

L{x′′}+ 2γL{x′}+ ω2L{x} = L{G(t)}.
Using the notation:

f(s) ≡ L{x(t)} , and: g(s) ≡ L{G(t)},
and using the above developed relations for the Laplace Transforms of the
first and second derivatives, we arrive at the equation:

s2f(s)− s x(0)− x′(0) + 2γsf(s)− 2γx(0) + ω2f(s) = g(s).

This is just an algebraic equation that must be satisfied by f(s), given
g(s) and the constants x(0) and x′(0). Solving for f(s) we obtain:

f(s) =
(s+ 2γ)x(0) + x′(0) + g(s)

s2 + 2γs+ ω2
.

3b. Inverse Laplace Transform. What we wanted to find was x(t)
for all values of t. Instead what we have is f(s), the Laplace Transform of
x(t). Knowing f(s), to find x(t) you need to evaluate the inverse Laplace
Transform of f(s):

x(t) ≡ L−1{f(s)} , where: f(s) = L{x(t)} .
The standard procedure for finding the inverse Laplace Transform is to
use a table which displays the Laplace Transform of a large variety of
functions (and hence the inverse transform as well.) For example, suppose
λ = 0 and F (t) = 0. Then our equation is the equation of motion for the
simple harmonic oscillator:

x′′(t) + ω2
0x(t) = 0 ,

3See “Damped Mechanical Oscillations” (MISN-0-29), “Damped Driven Os-
cillations” (MISN-0-31), and “Computer Algorithm for the Damped Driven
Oscillator”(MISN-0-39) for more on the damped driven oscillator.
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and taking the Laplace Transform of this equation and solving it for the
Laplace Transform of x(t), we have:

L{x(t)} ≡ f0(s) =
s x(0) + x′(0)

s2 + ω2
0

.

But we saw previously that:

L{sinat} =
a

s2 + a2
, and: L{cos at} =

s

s2 + a2
,

so our transform is:

f(s) = x(0)

[
s

s2 + ω2
0

]
+

x′(0)
ω0

[
ω0

s2 + ω2
0

]
.

Then the function whose transform this is, must be:

x(t) = x0 cosω0t+
x′(0)
ω0

sinω0t ,

which you recognize as the solution to the differential equation that we
started with, x′′(t) + ω2

0x(t) = 0. For the damped driven oscillator, the
solution to the problem is the inverse transform of the f(s) we previously
found:

x(t) = L−1{f(s)} = L−1

{
(s+ 2γ)x(0) + x′(0) + g(s)

s2 + 2γs+ ω2
0

}

= L−1

{
(s+ 2γ)x(0) + x′(0)

s2 + 2γs+ ω2
0

}
+ L−1

{
g(s)

s2 + 2γs+ w2
0

}
,

using the linearity of the inverse Laplace Transform operation. The second
transform arises only if there is a driving force. It is the “transient.”4

3c. Transient Solution. Looking at just the transient term for the
time being (this is the solution to the damped oscillator problem5), and
scanning a table of Transforms we see that:

L{
e−at sinωt

}
=

ω

(s+ a)2 + ω2
,

and:

L{
e−at cosωt

}
=

s+ a

(s+ a)2 + ω2

4See “Damped Driven Oscillations; Mechanical Resonances”(MISN-0-31).
5See “Damped Mechanical Oscillations” (MISN-0-29).
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So we know, for example, the inverse transform:

L−1

{
ω

(s+ a)2 + ω2

}
= e−at sinωt .

Our transient term looks to be almost of this form. If we complete the
square in the denominator,

s2 + 2γs+ ω2
0 = (s+ γ)2 + ω2

0 − γ2 ,

then:

xtransient(t) = L−1

[
(s+ γ)x(0) + γx(0) + x′(0)

(s+ γ)2 + ω2
0 − γ2

]
,

xtransient(t) = L−1

[
(s+ γ)x(0)

(s+ γ)2 + ω2
0 − γ2

]
+ L−1

[
γx(0) + x′(0)

(s+ γ)2 + ω2
0 − γ2

]
,

L−1

{
(s+ γ)x(0)

(s+ γ)2 + ω2
0 − γ2

}
= x(0)e−γt cos

√
ω2
0 − γ2 t ,

L−1

{
1

(s+ γ)2 + ω2
0 − γ2

}
=

1√
ω2
0 − γ2

e−γt sin
√
ω2
0 − γ2 t.

Then the full transient solution is:

xtran(t) = x(0)e−γt cosωt+
γx(0) + x′(0)

ω
e−γt sinωt ,

where: ω ≡ √
ω2
0 − γ2. If you put in t = 0, the right side is only x(0).

Taking the first derivative and setting t = 0, you again get only x′(0) on
the right side. This again shows that the constants x(0) and x′(0) are
the initial values of the displacement and the velocity. As t → ∞, this
transient term dies out because of the exponential.

3d. Steady-State Solution. What about the steady-state solution,
the one that comes about because of the driving force? That solution is:

xsteady(t) = L−1

{
g(s)

(s+ γ)2 + ω2
0 − γ2

}
,

and depends of course on the specific time dependence of the driving force
[and hence the functional form of g(s)].

We now use the valuable Convolution Property of Laplace Transforms,
which states:

If: L−1{g(s)} = G(t) , and: L−1{f(s)} = F (t),
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then: L−1{f(s)g(s)} =

∫ t

0

F (t− u)G(u)du.

For our steady-state solution:

xsteady(t) =
1√

ω2
0 − γ2

∫ t

0

e−γ(t−u) sin[(ω2
0 − γ2)1/2(t− u)] G(u) du .

This is a messy integral even for the simplest case of a constant driving
force. Let’s look at a simplification, a case of no damping, γ = 0 and a
sinusoidal driving force:

G(t) =
F (t)

m
=

F0

m
cosωt ,

xsteady(t) =
F0

mω0

∫ t

0

sin[ω0(t− u)] cosωu du.

Using: sin (ω0t− ω0u) = sinω0t cosω0u− cosω0t sinω0u

we find:

xsteady(t) =
F0

mω0
[sinω0t

∫ t

0

cosω0u sinωu du−

cosω0t

∫ t

0

sinω0u cosωu du]

=
F0

mω0

[
sinω0t

(
sin(ω0 − ω)t

2(ω0 − ω)
+

sin(ω0 + ω)t

2(ω0 + ω)

)
+

cosω0t

(
cos(ω0 − ω)t

2(ω0 − ω)
+

cos(ω0 + ω)t

2(ω0 + ω)
− 2

)]
.

Notice that when the driving frequency, ω, is close to the natural fre-
quency of the oscillator, ω0, x gets very large. The system is near reso-
nance.6
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6 See “Damped Driven Oscillations; Mechanical Resonances” (MISN-0-31).
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LOCAL GUIDE

The book Theory and Problems of Laplace Transforms has been placed
on on reserve for you in the Physics-Astronomy Library, Room 230 in the
Physics-Astronomy Building.
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PROBLEM SUPPLEMENT

Note: Problems 13-14 also occur in this module’s Model Exam.

1. How is the Laplace Transform of F (t) defined? [K]

2. For what values of s is it defined? [E]

3. Evaluate directly the Laplace Transform, f(s), of F (t) = 7t+ 8. [I]

4. For what values of s is the above f(s) defined? [A]

5. Without referring back to the text, evaluate the Laplace Transform of
d2F (t)/dt2. Your answer should be expressed in terms of the Laplace
Transform of F (t) and some constants. [G]

6. What are the constants in your answer to 5? [J]

7. Consider the differential equation 5F ′′(t)−6F ′(t)+F (t) = 10, subject
to these boundary conditions at t = 0 : F (0) = 0 and F ′(0) = −2.
What algebraic equation must the Laplace Transform of F (t) satisfy?
[B] Solve this equation. [H]

8. Find the inverse Laplace Transform to the f(s) you found in the above
problem. Use Appendix A (entry 11) and Appendix B (entry 16) on
pages 245 and 246 of Schaum or some other reference book’s entries.
[C]

9. A damped harmonic oscillator has a damping term proportional to the
velocity of the oscillator mass with a damping constant equal to 4.0
N s/m. The mass of the oscillator is 5.0 kg while the spring constant
is 2.0×101N/m. Determine the resultant force on the oscillator mass
as a function of time. [L]

10. What is the differential equation of motion for this oscillator? [D]

11. If the oscillator is at rest at t = 0, but displaced by amount x = +0.1m
from equilibrium, find the algebraic equation satisfied by the Laplace
Transform of x(t). [F]. Solve this equation. [N]

12. Find the inverse Laplace-transform to this, and hence the solution to
the problem. Don’t just plug into a form you find for the solution.
Evaluate it step-by-step as in the text. [M]
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13. Evaluate the Laplace Transform of:

F (t) = at2 + bt. [P]

14. Determine the formal expression for

L{d
3F (t)

dt3
},

in terms of f(s) ≡ L{F (t)} and specified t = 0 constants. [O]

Brief Answers:

A. for all s > 0.

B. 5s2f + 10− 6sf + f = 10/s.

C. F = 10(1− et/5).

D. x′′ + 0.8x′ + 4x = 0.

E. For those values of s for which the integral converges.

F. s2f − 0.1s+ 0.8sf − 0.08 + 4f = 0.

G. s2f(s)− sF (0)− F ′(0).

H. f =
10

s(5s− 1)(s− 1)
− 10

(5s− 1)(s− 1)
.

I.
8s+ 7

s2
.

J. The function F and its first derivative evaluated at t = 0.

K. L{F (t)} =
∫∞
0

e−stf(t) dt.

L. −4v(t)− 20x(t)

M. x(t) = exp(−0.4t){0.1 cos(1.96t) + 0.02 sin(l.96t)}

N.
0.1s+ 0.08

s2 + 0.8s+ 4
.

O. s3f(s)− s2f(0)− sf ′(0)− f ′′(0).

P. (2a+ bs)/s3.
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MODEL EXAM

1. See Output Skills K1-K3 in this module’s ID Sheet. One or more of
these skills, or none, may be on the actual exam.

2. Evaluate the Laplace Transform of:

F (t) = at2 + bt.

3. Determine the formal expression for

L{d
3F (t)

dt3
},

in terms of f(s) ≡ L{F (t)} and specified constants.

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 13.

3. See this module’s Problem Supplement, problem 14.
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