

APPEARANCES AT RELATIVISTIC SPEEDS by
 Peter Signell, Michigan State University

1. Replacing an Erroneous View 1
2. Simple Object: a Cube 1
3. No Contraction, No Retardationa. View From Side of Slowly Moving Cube2
b. View of a Slowly Moving Rotated Cube 2
4. Retardation, No Contraction
a. Photon Departure Positions and Times 3
b. A Photon's Lead Time 3
c. Distance Traveled by Cube During Lead Time 4
5. Retardation and Contraction
a. Modification Due to Lorentz Contraction 4
b. Apparent Angle of Rotation 4
Acknowledgments 5
A. Additional References 5
B. Journal Excerpts 7

Title: Appearances at Relativistic Speeds

Author: Peter Signell, Michigan State University
Version: 11/7/2001
Evaluation: Stage 0
Length: 1 hr ; 16 pages

Input Skills:

1. Use relativistically correct equations to determine line segment lengths as observed from different frames of reference (MISN-013).

Output Skills (Knowledge):

K1. Derive the correct appearance of a moving object, taking into account the apparent Lorentz contraction of the object and also the finite speed of the particles of light by which one observes it.
K2. Show that, for ordinary every-day speeds, the apparent angle of rotation, produced by retardation/contraction, is too small to be seen.
K3. Describe the appearance of a moving cube as its $v / c \rightarrow 1$.
K4. Show that, under that assumption of the Lorentz contraction alone, a moving object would appear distorted with respect to its rest-frame shape.
K5. Show that a distant straight line traveling at speed v will appear rotated through an angle $\theta=\cos ^{-1} \sqrt{1-v^{2} / c^{2}}$.

THIS IS A DEVELOPMENTAL-STAGE PUBLICATION OF PROJECT PHYSNET

The goal of our project is to assist a network of educators and scientists in transferring physics from one person to another. We support manuscript processing and distribution, along with communication and information systems. We also work with employers to identify basic scientific skills as well as physics topics that are needed in science and technology. A number of our publications are aimed at assisting users in acquiring such skills.

Our publications are designed: (i) to be updated quickly in response to field tests and new scientific developments; (ii) to be used in both classroom and professional settings; (iii) to show the prerequisite dependencies existing among the various chunks of physics knowledge and skill, as a guide both to mental organization and to use of the materials; and (iv) to be adapted quickly to specific user needs ranging from single-skill instruction to complete custom textbooks.

New authors, reviewers and field testers are welcome.

PROJECT STAFF

Andrew Schnepp	Webmaster
Eugene Kales	Graphics
Peter Signell	Project Director

ADVISORY COMMITTEE

$$
\begin{array}{ll}
\text { D. Alan Bromley } & \text { Yale University } \\
\text { E. Leonard Jossem } & \text { The Ohio State University } \\
\text { A. A. Strassenburg } & \text { S. U. N. Y., Stony Brook }
\end{array}
$$

Views expressed in a module are those of the module author(s) and are not necessarily those of other project participants.
© 2001, Peter Signell for Project PHYSNET, Physics-Astronomy Bldg., Mich. State Univ., E. Lansing, MI 48824; (517) 355-3784. For our liberal use policies see:
http://www.physnet.org/home/modules/license.html.

APPEARANCES AT RELATIVISTIC SPEEDS

by

Peter Signell, Michigan State University

1. Replacing an Erroneous View

This topic, the appearance of objects moving at relativistic speeds, should be viewed as a recreation inasmuch as its final result is not used elsewhere in the physical sciences. Nevertheless, the derivation and exposition in 1959 led to widespread discussion; in one stroke it demolished a picture which physicists had believed in and taught for fifty years. Moreover, it replaced a complicated erroneous picture with a simple correct one. We also recommend the derivation to you because the techniques and principles used are useful in other areas.

2. Simple Object: a Cube

In order to simplify the derivation, we will deal solely with an object which, in its rest frame (when at rest), has the appearance of a cube with sides of length ℓ. The cube is assumed to be so far away from you, the observer, that the light rays coming to you from its various parts can be considered to be parallel. Also, we will only consider its appearance as the object passes directly in front of you as shown in Figure 1. Note also

Figure 1. View from above. The cube is drawn as it would appear in its rest frame.

Figure 2. As in Fig. 1, view from the front. What corner is hidden behind corner B?
the labels of the outside corners of this solid cube.

3. No Contraction, No Retardation

3a. View From Side of Slowly Moving Cube. This is the ordinary approximate appearance one obtains for an object moving at speeds that are very small compared to the speed of light. For a cube of side ℓ we expect the appearance to be as shown in Figure 2.
3b. View of a Slowly Moving Rotated Cube. Now suppose that the cube has been rotated about an axis perpendicular to both the line to the eye and the direction of motion, as shown in Figure 3a. Then the observer is predicted to see the appearance as shown in Figure 3b.

Figure 3. A rotated cube: (a) top view; (b) side view.

Figure 4. View of the cube from above. The dashed lines show the position of the cube at some particular time while the solid lines show its position at a later time.

4. Retardation, No Contraction

4a. Photon Departure Positions and Times. We go back to the unrotated cube and start from the appearance at any one instant as resulting from all of the photons ${ }^{1}$ arriving at the observer at that instant. Photons do not travel instantaneously from the cube to the observer. The speed of light is finite. Due to the varying distances of the parts of the cube from the observer, and our requirement that the photons from them must all arrive at the eye at the same time, the photons must have left their points of origin on the cube at various times in the past. This "retardation" effect means that a photon of light must have left corner E earlier than one from corner B to arrive at the observer at the same time. To see this, compare Figure 1 and Figure 4. In Figure 4, photon E must have left corner E at time t_{E}, whereas photons B and C left at time $t_{B, C}$.
4b. A Photon's Lead Time. The extra distance the E photon must travel is ℓ, since that is the length of side $B E$ (remember that our photons are supposed to be traveling parallel paths due to the large distance to the observer). Thus the E photon must start out earlier than the B and C photons by a time given by:
E-photon's lead time $=\frac{\text { extra distance }}{\text { photon's speed }}=\frac{\ell}{c}=t_{B, C}-t_{E}$.(see Fig. 4)

[^0]4c. Distance Traveled by Cube During Lead Time. During this time the cube travels a distance given by:

$$
\text { cube's distance }=\text { cube's speed } \times \text { time }=v \times \frac{\ell}{c}=\frac{\ell v}{c}=t_{B, C}-t_{E} \text {. }
$$

Considering only the retardation effect, the cube would appear as in Fig. 5.

5. Retardation and Contraction

5a. Modification Due to Lorentz Contraction. Using relativity, ${ }^{2}$ one finds that a moving length in the direction of motion becomes contracted from its "rest-frame" or proper value L_{0} to $L(v)=L_{0} \sqrt{1-v^{2} / c^{2}}$. Side $A D$ of the cube in Fig. 1 has its entire length in the direction of motion. Therefore the Lorentz contraction modifies Fig. 5 in the manner shown in Fig. 6.

5b. Apparent Angle of Rotation. This is the final, correct appearance. It is astonishing that it is exactly the rest-frame appearance of the cube rotated through an angle of:

$$
\theta=\sin ^{-1}(v / c)=\cos ^{-1} \sqrt{1-v^{2} / c^{2}}
$$

as shown in Figure 3b.
\triangleright Show that Figs. 5 and 6 reduce to Figure 2 as $v / c \rightarrow 0$.
\triangleright Show that, for ordinary everyday speeds, θ is too small to be seen.
\triangleright Describe the appearance of the cube as $v / c \rightarrow 1$.
\triangleright Prior to Terrell's inclusion of the effects of retardation, physicists assumed that the appearance would be that produced by the Lorentz contraction alone. Show, under that assumption, that the front side (toward

$$
{ }^{2} \text { See "The Length Contraction and Time Dilation Effects of Special Relativity" }
$$ (MISN-0-13).

Figure 5. From the side, no Lorentz contraction but with retardation.

Figure 6. Appearance from the side, with Lorentz contraction and retardation.
the observer) (in the direction of motion) would appear rotated through an angle $\theta=\cos ^{-1} \sqrt{1-v^{2} / c^{2}}$, while the left side (perpendicular to the direction of motion) would appear unrotated. You are thus showing that the cube would appear distorted with respect to its rest-frame shape.
\triangleright Suppose a distant piece of straight line has its length in the direction of its motion. Show that it will have the appearance of a rest-frame line rotated through an angle $\theta=\cos ^{-1} \sqrt{1-v^{2} / c^{2}}$.

Acknowledgments

Steve Smith, Mark McChesney, Douglas Ullmer, and Ray Van Ausdal gave valuable feedback on an earlier version of this module. Jim Linnemann made very useful suggestions that were incorporated as given. Preparation of this module was supported in part by the National Science Foundation, Division of Science Education Development and Research, through Grant \#SED 74-20088 to Michigan State University.

A. Additional References

- "Invisibility of the Lorentz Contraction," James Terrell, Physical Review 116, 1041 (1959). See the first page of his article, reproduced by permission in Appendix B.
- "Observation of Length by a Single Observer," Roy Weinstein, American Journal of Physics 28, 607 (1960). He considers the problem of a line segment oriented along the direction of motion, with Lorentz contraction and retardation, and without the restriction of parallel rays (large distance from object to observer). See his abstract, reproduced by permission in Appendix B.
- "The Visual Appearance of Rapidly Moving Objects," V. F. Weisskopf, Physics Today, Vol. 13, No. 9, 24 (Sept., 1960). The de-
scription in this module is based mainly on Professor Weisskopf's exposition of Terrell's paper. Weisskopf shows the appearance of the cube along its entire trajectory and makes interesting comments.
- Scientific American, Vol. 203, No. 1, 74 (1960).
- "Apparent Shape of Large Objects at Relativistic Speeds", Mary L. Boas, American Journal of Physics 29, 283 (1961). She considers objects of finite shape and distance. Her abstract is reproduced by permission in Appendix B.

B. Journal Excerpts

AMERICAN JOURNAL of PHYSICS

A Jowrnal Deroted to the Instructional and Cultural Aspects of Physical Science
Volume 28. Number 7
October, 1960

Observation of Length by a Single Observer*

Roy Weinstein Denmark, and Norticiser
agen, Denmark, and Northeaster (Received December 3, 1959)

One problem arising in teaching speciai relativity is the confusion in many texts of the thought experiments, used in developing the theory, with other simple laboratory operations. As an example we consider here the observation of length. The existence of the Lorentz-Fitzgerald contraction has led educators to conclude that one sees a contraction of a rapidly moving body.
However, the act of secing involves a single observer, while the observation of the Lorentz. However, the act of secings involves a single observer, while the observation of the Lorentza single observer is not the usual contraction, and indeed, under certain circumstances, one sees a body considerably lengthened rather than contracted.

AMERICAN JOURNAL of PHYSICS

A Journal Devoted to the Instructional and Cultural Aspects of Physical Science
Volume 29, Number 5

Apparent Shape of Large Objects at Relativistic Speeds

> Mary L. Boas Depariment of Physics, De Paul Uniersity, Chicago, Illinois (Received September 21, 1960)

It-has been recently recognized that there is a difference between the measured Lorentz contracted shape of an object moving at relativistic speed and the shape as seen by a single bserver. The case of an object which subtends a small solid angle at the observer has been discussed by several authors. This paper discusses objects so large or so near that the subtended solid angle cannot be considered small, and gives simple proofs that spheres always present a
circular outline and that straight lines may appenr curved These results are applied to revise Gamow's well-known picture of the bicyclist seen by Mr. Tompkins.

MODEL EXAM

1. See Output Skills K1-K5 in this module's $I D$ Sheet. The actual exam may contain any number of these skills.

Brief Answers:

1. See this module's text.

[^0]: ${ }^{1}$ (fō'tän, a particle of light).

