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PENDULA, SIMPLE AND PHYSICAL

by

J. S. Kovacs, Michigan State University

1. Introduction

1a. Periodic Oscillation of Suspended Objects. An object sus-
pended in the gravitational field of the earth hangs there in some equi-
librium position (such that the center-of-mass of the object is directly
below the fixed point of suspension). If this object is displaced from this
equilibrium position and released, its motion is simple harmonic motion -
where the period associated with the vibratory motion is independent of
the amount of displacement form equilibrium and depends only upon the
distribution of the mass of the object and the constant acceleration due
to gravity. The general expression for the period of this vibration will be
derived and applied to some simple systems.

1b. The Simple Pendulum. A simple pendulum, a mathematical
idealization, is defined as a point mass at the end of a rigid massless rod
suspended in the gravitational field of the earth free to oscillate about the
vertically oriented equilibrium position. The motion about the equilib-
rium position is simple harmonic for small displacements from the equi-
librium with period

P = 2π

√

L

g
. (1)

Here L is the distance from the point of pivot to the mass.

1c. The Physical Pendulum. Any object suspended from a fixed
point in the object, free to pivot about some horizontal axis through that
point, will execute oscillatory motion about its equilibrium orientation.
The equilibrium orientation is that for which the static equilibrium condi-
tions are satisfied.1 That occurs when the center of mass of the suspended
object is directly below the point of pivot.

1The conditions of static equilibrium are satisfied when the resultant force on the
object is zero and the resultant torque of these forces relative to any point in space is
zero. See “Static Equilibrium, Centers of Force, Gravity, and Mass” (MISN-0-6).
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Figure 1. A rod as a physical pendulum. The point of
application of ~F denotes the PIN point. The unit vector ẑ
points upward, out of the page.

2. Analysis of the Physical Pendulum

2a. Example: Force and Torque on a Suspended Uniform
Rod. As a concrete example, consider a uniform rod of length L, mass
M , fixed at one end so that it is free to rotate in a vertical plane. At
some instant in its oscillatory motion what are the forces acting on this
object? There are essentially two: the force of gravity, ~W , acting at the
center of mass, and the force, ~FPIN , the axis exerts on the rod at the
pivot point (See Fig. 1). To facilitate expressing the forces and torques
acting on this system (the rod), let us set up a coordinate system with
a set of orthogonal unit vectors associated with this coordinate system.
Instead of the usual orthogonal coordinate system fixed in space, it will
be more convenient to use a coordinate system that is attached to the
rod.2

Consider a set of unit vectors attached to the CM of the rod: ~r is
parallel to the rod, pointing in the direction in which ~r increases (~r being
the vector from the origin of the coordinates, the point where the rod

2Such a coordinate system has to be used with caution, because relative to an
observer who watches the rod move, these unit vectors are not fixed in direction.
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is attached, to any point on the rod, or in space for that matter), θ̂ is
perpendicular to the rod (tangent to the circle swept out by the center
of mass) and pointing in a direction in which θ increases. The third unit
vector, ẑ, points up, out of the page and is defined by the cross-product of
the other unit vectors: ẑ = r̂× θ̂. In Fig. 1 the rod’s motion is restricted
to the plane of the paper. The unit vectors r̂ and θ̂ are always in this
plane so ẑ is always perpendicular to it. Relative to this framework, we
can express the forces on the rod as:

~FPIN = −F‖r̂ + F⊥θ̂, (2)

~W = (Mg cos θ)r̂ − (Mg sin θ)θ̂. (3)

Relative to the point where the rod is pinned, what are the torques on
the system? Obviously, the torque of ~FPIN is zero. The torque of the
gravity force can be shown to be:

~τ = −(Mg b sin θ)ẑ, (4)

where b is the distance from the origin to the center of mass of the object
(b = L/2 in this case). The torque ~τ is directed into the page, tending
to rotate the system clockwise about the axis through the pin.

2b. The Equation of Motion for the Uniform Rod. The motion
is about a principal axis (an axis perpendicular to the rod at the upper

end), therefore ~L and ~ω are parallel: ~L = I~ω. It is always true that:

d~L

dt
= ~τ ,

so that, with ~L = I~ω we have:

~τ = I
d~ω

dt
= I~α.

This latter relation3 is correct only if the direction of ~τ is parallel to a
principal axis (as it is in this case). What is the direction of the vector ~α?
Because the motion of the object is planar, ~α can only be perpendicular
to that plane (recall that the tangential acceleration of a point undergoing
circular motion is given by ~aT = ~α × ~r). Therefore, in the case of this
system:

~α =
d2θ

dt2
ẑ (5)

3Recall Sect. 1 of “Rotational Motion of a Rigid Body” (MISN-0-36).
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(If d2θ/dt2 is positive, ~α is up, out of the page.) The second derivative,
d2θ/dt2, is what we are seeking. If we know it as a function of time and
integrate it twice, then we’ll have a complete description of the angular
motion of the object (if we know two initial conditions as well). The
torque equation above, which we derived starting from Newton’s Law,
tells us how this effect, the acceleration d2θ/dt2, is related to the external
torque through ~τ = I~α. For our rod, then:

−(Mg b sin θ) ẑ =

(

I
d2θ

dt2

)

ẑ (6)

(

d2θ

dt2
+

Mg b sin θ

I

)

ẑ = 0, (7)

a vector that equals zero. It will be zero, if its components (in this case
only the one component) have zero magnitude:

d2θ

dt2
+

Mg b sin θ

I
= 0. (8)

The quantity I is the moment of inertia of the object relative to the axis
of rotation.

2c. The Small Angular Displacement Approximation. The so-
lution to this second order differential equation gives θ, the angular dis-
placement from the equilibrium position (θ = 0), as a function of time.
This seemingly simple differential equation does not have a solution that
is easily expressible in terms of known functions. However, if the restric-
tion is made that the displacement from equilibrium for all values of t is
“small,” then this equation falls into a familiar form. What is “small”?
By this is meant the condition under which you can to an accurate ap-
proximation replace sin θ by θ. From the power series definition of sin θ,

sin θ = θ −
θ3

3!
+

θ5

5!
+ . . .

we see that this condition is satisfied if θ3 is insignificant when compared
with θ (in radians). Reference to a table of trigonometric functions verifies
that, to three significant figures, the values for sin θ and θ do not begin
to differ appreciably until the angle gets greater than 10◦. With this
approximation, valid for small θ, the differential equation becomes:

d2θ

dt2
+

Mg b

I
θ = 0. (9)
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2d. Solution to the Small Angle Equation of Motion. Equation
(9) has well known and simple solutions, linear combinations of sines and
cosines, for example:

θ(t) = A sin(ωt) +B cos(ωt) (10)

where: ω = (Mg b/I)1/2 and A and B are constants depending on initial
values (at t=0) of θ and dθ/dt.4 That this is a solution may be verified
by substituting it into the differential equation.

2e. General Expression for the Period of Oscillation. The pe-
riodicity associated with this motion can be ascertained by looking at
the phase of the sine or cosine function. The phase should be (2π/p)t or
(2πν)t, where p and ν are the period and frequency associated with the
motion. Hence the period of this pendulum is:

P = 2π

√

I

Mg b
. (11)

Note that the period of this oscillatory motion depends upon the value of
the acceleration of gravity at the location of the pendulum. A pendulum
clock, calibrated at one location, will be in error if moved to another
location where g is different.

2f. Periods of the Uniform Rod and Simple Pendula. Specifi-
cally, for the uniform rod of length L, free to rotate about an axis per-
pendicular to the rod at one end, the moment of inertia, using Steiner’s
(the Parallel Axis) Theorem, is given starting from:

I = Ic +Ma2, (12)

where Ic is the moment of inertia with respect to an axis through the
center of mass parallel to the pivot axis (ML2/12 for a uniform rod)
and a is the distance from the CM to the point about which the desired
moment of inertial is sought. Hence,

I =
ML2

3
.

With b = L/2, the period of oscillatory motion is

P = 2π

√

2L

3g

4See MISN-0-26 for an example.
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For the simple pendulum, I = ML2, b = L, so that

P = 2π

√

L

g

as stated in Eq. (1).
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PROBLEM SUPPLEMENT

Note: Problem 1 also occurs in this module’s Model Exam.

1. A pendulum consists of two point particles of mass 0.40M and 0.60M ,
respectively, attached to a rigid massless rod of length L. The rod is
pinned at one end, and is thereby constrained to move in a vertical
plane in the gravity field of the earth. One mass, 0.40M , is located
one-fourth of the rod’s length from the pinned end. The other mass,
0.6M is at the free end.

a. Locate the center of mass of the system. [C]

b. Draw a free-body diagram showing all of the forces acting on the
system (the rod). [B]

c. Relative to the fixed end of the rod find the net torque on the
system, and from this find the differential equation which describes
the angular motion of the rod. [D]

d. Find the moment of inertia of this system. [F]

e. What is the period of oscillatory motion (for small oscillations) of
this system? [A]

f. If the fixed pivot point were midway between the two masses, what
should be the period of small oscillations? [E] What should happen
to the period as the fixed point approaches the CM? [G]
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Brief Answers:

A. 2
√

50L/56g.

B. See textual material.

C. (7/10) L from fixed end.

D. See textual material.

E. 2π
√

30L/16g.

F. (5/8)M L2.

G. It should get larger, eventually approaching infinity at the CM.
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MODEL EXAM

1. Without referring to a text or notes, derive the expression for the
period of the simple pendulum for small oscillations. If you wish to
follow a guide which emphasizes the important features that should be
covered in the derivation, carry out the development in these steps:

a. On a sketch of the pendulum showing the system inclined at an
angle θ with the vertical, show all of the forces acting on the point
mass.

b. Use the definition of torque to determine the torque on the mass
relative to the point suspension. Express your result in terms of the
set of unit vectors r̂, θ̂, and ẑ, where r̂ is the unit vector along the
direction from the origin to the point mass and θ̂ is perpendicular
to this in the direction of increasing θ.

c. Determine the angular acceleration of the pendulum at this angle
θ.

d. From the resulting equation, making a suitable approximation, iden-
tify the frequency of oscillatory motion. Explain under what con-
ditions it is correct.

2. A pendulum consists of two point particles of mass 0.40M and 0.60M ,
respectively, attached to a rigid massless rod of length L. The rod is
pinned at one end and is thereby constrained to move in a vertical
plane in the gravity field of the earth. One mass, 0.40M , is located
one-fourth of the rod’s length from the pinned end. The other mass,
0.6M is at the fre end.

a. Locate the center of mass of the system.

b. Draw a free-body diagram showing all of the forces acting on the
system (the rod).

c. Relative to the fixed end of the rod find the net torque on the
system, and from this find the differential equation which describes
the angular motion of the rod.

d. Find the moment of inertia of this system.

e. What is the period of oscillatory motion (for small oscillations) of
this system?

14



MISN-0-42 ME-2

f. If the fixed pivot point were midway between the two masses, what
should be the period of small oscillations? What should happen to
the period as the fixed point approaches the CM?

15

MISN-0-42 ME-3

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 1.
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