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DYNAMICS FOR CIRCULAR MOTION

by

Peter Signell, Michigan State University

1. Introduction

1a. The Law is Useful. The easiest way to achieve a quick under-
standing of much natural and man-made rotational phenomena, and pre-
dictive power as well, is through the Law of Conservation of Angular
Momentum. As an example of application to a rotating system, con-
sider a figure skater spinning with angular velocity ω, arms outstretched.
The skater suddenly draws her arms inward and straightens her body
and thereby produces a dramatic change in her angular velocity. Using
the Law of Conservation of Angular Momentum, we can not only predict
whether her new spin rate will be less or greater than her old one, but also
make a good quick estimate or a precise calculation of her actual change
in angular velocity. The same technique used in this case can be applied
to a huge number of diverse systems.

1b. The Law Appears to be Exact and Universal. The Law
of Conservation of Angular Momentum is one of the great laws of the
universe. It has been observed to hold, to the limits of measurable accu-
racy, for the incredibly small particles which live only virtually and for
incredibly brief times within the hearts of atoms, to hold for everyday
natural and man-made objects, and to hold for the stars and galaxies in
distant parts of the universe. It is on the same sort of footing as the Law
of Conservation of Momentum, in that no violation of it has ever been
found.

2. Magnitude of Angular Momentum

2a. Definition: Point Mass, Circular Motion. The symbol L is
universally used to represent the magnitude of mechanical angular mo-
mentum: its definition for a point mass m in circular motion is:

L = mvr (point mass in circular motion). (1)

The parameters m, v, and r are illustrated in Fig. 1. The rotating mass m
could be a tiny chunk at a radius r in a compact disc, or it could represent
the mass of one of a spinning ice skater’s arms at an effective radius r.
It could be a molecule at a radius r from the center of a centrifuge, an
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axis of rotation

(out of paper)

r

m

v

Figure 1. Parameters used in discussing angu-
lar momentum.

electron at a radius r from the center of its atom, or it could be a car on
a turn, with radius of curvature r, in the Indy 500. For each of these, we
take the product of the object’s mass, speed, and radial distance from the
axis about which it is rotating.

In reality, angular momentum is a vector quantity, hence it is often
written ~L. However, only its magnitude L, defined above, is needed for
dealing with planar motion.1

2b. The Additive Property of Angular Momentum. The an-
gular momentum of a collection of masses is just the sum of the angular
momenta of the individual masses. This is especially simple to state math-
ematically for cases where the masses all move in the same plane. For
two such masses:

L = m1v1r1 +m2v2r2 (planar motion).

Here both radii must be measured from the same axis of rotation. In
general, for N masses, the additive property is written:

L =

N
∑

i=1

miviri (planar motion).

2c. Rigid Objects: Moment of Inertia. The angular momentum
of a rigid planar object is often written as the product of the object’s
angular velocity and its “moment of inertia.” Objects for which this is
appropriate include the record, the skater, the centrifuge, and the car
cited above. Such a rigid object’s component masses all have the same

1For the full vector definition see the Appendix.
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Figure 2. Examples of rigid planar rotators having two
masses. The masses’ radii are measured from a common
axis of rotation.

angular velocity and thus the angular momentum can be written:

L =
N

∑

i=1

miviri =
N

∑

i=1

miωr2
i = (m1r

2
1 +m2r

2
2 + . . .)ω =

[

N
∑

i=1

mir
2
i

]

ω.

The factored quantity in the brackets is determined solely by the spatial
distributions2 and values of the component masses and is independent of
the state of rotation of the object. It is always denoted by the symbol I:

I =
N

∑

i=1

mir
2
i (planar set of masses).

the quantity I is called the object’s “moment of inertia.” The angular
momentum is then written:

L = Iω (rigid planar object),

which is the rotational analogue of the expression for linear momentum,

p = mv (linear motion),

with p → L, m → I, v → ω. The same substitutions occur in other
equations that are rotational analogues of linear equations.

3. Conservation of Angular Momentum

3a. Torque. An object in circular motion is said to be experiencing a
torque with respect to its axis of rotation if it is experiencing a force with

2Spatial distribution ≡ positions in space.
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Figure 3. Looking down on the figure skater before and
after the arms are pulled in. Here r and r′ are the body
mass’s effective radii, before and after.

a component along the direction of motion. This checks with our common
meaning of the “torque.” More precisely, the magnitude of torque is given
by:

τ = rF⊥ ,

where F⊥ is the component of force perpendicular to the object’s radius
vector. Torque is actually a vector quantity although only its magnitude
is needed for dealing with planar motion.

3b. Statement of the Conservation Law. Here is the law of Con-
servation of Angular Momentum:

As long as an object experiences no torque about an axis, the
object’s angular momentum about that axis will be conserved.

3c. An Example: The Spinning Skater. Consider the spinning ice
skater who brings in her arms and straightens up her body in order to
increase her spin rate: her angular momentum about her vertical spin
axis will be conserved if she experiences no torque about that axis. Now
her only point of contact with an external object which could produce
such a torque is at the skate-to-ice surface. However, this is a very small
point and is well lubricated with pressure-melted ice water: it can exert
only an exceedingly small amount of torque. Thus we can say that her
angular momentum is conserved to a high accuracy as she moves her body
to increase her spin rate. Using primes for quantities measured after the
body movements, as in Figure 3, the conservation law is:

L = L′ ,
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hence:
ω′ = (r/r′)2ω .

If the skater cuts her mass’s effective radius by a factor of two, she could
increase her spin rate by a factor of four! You can demonstrate this effect
quite dramatically using a rotating lab stool with heavy weights in your
hands that heighten the change in your mass’s effective radius.

4. Rotational Kinetic Energy & Power

4a. Energy of Rotation: The Flywheel. Suppose we have a fly-
wheel, perhaps one in an experimental car,3 and we wish to know how
much energy we can store in it for a given angular velocity. If the flywheel
has almost all its mass m on its rim, then that mass is essentially all at a
single radius r and its rotational kinetic energy is:

Ek =
1

2
mv2 =

1

2
mr2ω2 =

1

2
Iω2 .

This is the energy one must put into the flywheel to take it from rest to
angular velocity ω. It is also the energy one can get back by stopping the
flywheel, so one can say that it is the energy stored in the flywheel by
virtue of its rotation. Note that the equation for rotational kinetic energy
can be generated from the one for linear kinetic energy by making these
replacements: m→ I, v → ω.

4b. Power Supplied by a Constant Torque In UCM. A real
flywheel has frictional energy losses, and perhaps others as well, and thus
it requires a driving force in order to maintain a constant angular velocity.
The power that needs to be transferred into the system by a constant
driving force F acting at a point moving with constant velocity v is:4

P =
d

dt
E =

d

dt
(Fx) = Fv. (constant F ) .

For our case the force is to act at a radius r and is to be always perpen-
dicular to the rotational axis (for example, the force exerted on a flywheel
by a belt.) The quantity r × F is the magnitude of the torque, τ , acting
on the flywheel. Since r and F are constant in our example, the torque
exerted on the flywheel will be constant. This is UCM so our flywheel is

3See “An Overview of Dynamics”(MISN-0-62) and “New Flywheel Designs for En-
ergy Storage” (MISN-0-46, Learner Originates).

4See “Work and Power” (MISN-0-20).
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rotating at a constant angular velocity ω. Putting these all together,

P = Fv = F r ω = τ ω. (constant τ) .

This energy flows in as mechanical work and out as frictional heat. Note
that the conversion from linear to angular quantities can be carried out,
as usual, through the replacements: F → τ , v → ω.

Acknowledgments
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A. Vector Angular Momentum

Only For Those Interested. When dealing with non-planar motion,
one must represent angular momentum by a vector, not just the magni-
tude of a vector. This makes Conservation of Angular Momentum into a
much more powerful tool for the scientist or engineer.

For an object containing masses m(1), m(2) . . . at positions ~r (1), ~r (2),
. . ., and having velocities ~v (1), ~v (1), . . . :

~L =
∑

i

~r (i) × ~p (i).

where the vector cross product is indicated and the masses’ momenta are
given as usual by ~p (i) = m(i) ~v (i). The other relationships in this mod-
ule, in their full vector glory, are (with n and m representing Cartesian
components and xn representing components of ~r):

Inm =
∑

i

m(i)x(i)
n x(i)

m ; Ln =
∑

m

Inmωm ; ~τ = ~r × ~F ,

d~L

dt
= ~τ (consv. of Ang. Mom. when τ = 0) ,

P = ~F · ~v. (constant ~F )
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PROBLEM SUPPLEMENT

Problems 5-8 also occur on this module’s Model Exam.

1. Calculate the moment of inertia, of the set
of rigidly connected masses shown, about
the axis of rotation shown. Each mass
M is 2.0 kg and the distances shown are:
2.0m, 3.0m, 4.0m, and 5.0m.

M

axis

M

M

M

4m 4m

2m

3m

5m

2. An ice skater is spinning at 3.00 rev/sec about a vertical axis with his
arms close to his body. He then changes his moment of inertia from
1.20 kgm2 to 1.60 kgm2 by extending his arms straight outward. Use
conservation of angular momentum to determine his new spin rate.

3. Starting from the equation for rotational kinetic energy, calculate the
change in the skater’s kinetic energy in Problem 2 above. State whether
the change was a loss or a gain for the skater. Where do you think the
increment of energy came from or went to?

4. A motor must deliver 1.5× 102 W to maintain
a flywheel at a constant 6.00× 102 rpm. If the
drive belt’s maximum surface strength against
abrasion is 5.0×101 N, calculate the minimum
radius for a “drive pulley” that can be used for
the belt.

motor flywheel

F r

Start from the equation for power delivered by a constant force to
maintain constant linear velocity.

5. If four masses (m = 2.0 kg each) are at the corners of a 6.0m × 8.0m
rectangle, find their collective moment of inertia about an axis perpen-
dicular to the plane of the rectangle and passing through its center.
Sketch the geometry.

6. A particular phonograph turntable and disc have a combined mo-
ment of inertia of (1/64) lb ft sec2 and are rotating freely at 30.0 rpm
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(rev/min). A fly with mass (1/32) lb sec2/ft, flying in the same direc-
tion as a fresh coffee spot on the disc, but at half the speed of the spot,
lands on the spot which is 6.0 inches from the center of the disc.

a. Justify and use conservation of angular momentum to calculate the
new rotational frequency of the disc.

b. Are the numbers in this problem realistic?

7. Two sky divers are positioned so their bodies are parallel and they are
face-to-face in free fall toward the earth. They have equal moments of
inertia about the single axis passing through both of their centers of
mass, and one of them is rotating about this axis at twice the rotational
frequency of the other. They now join hands and rotate as a unit.
Justify and use conservation of angular momentum to calculate the
percentage loss or gain in mechanical energy due to the hand joining.
Help: [S-1] Where does this energy come from or go to?

8. A particular jet has four engines, each of which develops 1.8×104 N of
thrust (force) at 7.46× 106 W. Calculate the minimum period in days
for the jet to make one revolution around the earth. (The radius of
the earth is 6.37× 106 m.)

Brief Answers:

1. 2.0× 102 kgm2

2. 2.25 rev/sec

3. loss of 53 J of energy: goes to heat in arm muscles. Help: [S-2]

4. 0.048m Help: [S-2]

5. 2.0× 102 kgm2

6. a. Since the turntable turns freely, no external torque can be exerted
on it; so angular momentum is conserved.

ν′ =
1 + (x/2)

1 + x
ν ,

where x ≡ mr2/I = 1/2; then ν ′ = 25 rpm. Help: [S-4]

b. A fly that weighs one pound?

12
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7. 1.0×101% (i.e., 10%) lost to heat in arm muscles, eventually transferred
to the surrounding air. Help: [S-1]

8. 1.1 day Help: [S-3]
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS-problem 7)

Read the first sentence in the problem word by word and make sure
you have the orientation of the two sky divers exactly as described there
rather than according to some preconceived idea of sky diver orientation.
If you still can’t do this problem, work problems 1 and 2 again.

S-2 (from PS-problems 3 and 4)

What are the units of angular velocity?
What are the units of frequency?
Which one is given in the problem?
Which one occurs in the equation you are using?
What is the conversion factor between them?
If you are unable to answer any of the above questions, see the Input
Skills reference in this module’s ID Sheet or see the Volume’s Index.

S-3 (from PS-problem 8)

Think to yourself: What equations do I know that relate time (the de-
sired quantity) to one or more of the given quantities (power, force,
distance)? Then, if that equation or set of equations has unknowns,
what equations do I know that relate those unknowns to given quanti-
ties?
Also:

(4)(1.8× 104 N)(2π × 6.37× 106 m)

(4)(7.46× 106 W)(Nm/W)(3600 s/hr)(24 hr/day)
= 1.1 day

S-4 (from PS-problem 6a)

We suggest that you just go ahead and add the angular momenta of
the fly and the turntable before the fly alights. Leave any unknown
quantity as a symbol. If necessary, relate velocity to frequency and ra-
dius. Then do the same for the angular momenta after the fly alights,
realizing that the fly and the turntable now have the same rotational fre-
quency. Equate the “before” angular momentum to the “after” angular
momentum and solve for the “after” frequency.

14
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MODEL EXAM

1. If four masses (m = 2.0 kg each) are at the corners of a 6.0m × 8.0m
rectangle, find their collective moment of inertia about an axis perpen-
dicular to the plane of the rectangle and passing through its center.
Sketch the geometry.

2. A particular phonograph turntable and disc have a combined moment
of inertia of 1/64 lb ft sec2 and are rotating freely at 30 rpm. A fly with
mass (1/32) lb sec2/ft, flying in the same direction as a fresh coffee spot
on the disc, but at half the speed, lights on the spot which is 6.0 inches
from the center of the disc.

a. Justify and use conservation of angular momentum to calculate the
new rotational frequency of the disc.

b. Are the numbers in this problem realistic?

3. Two sky divers are face to face in free fall toward the earth. They have
equal moments of inertia about the single axis passing through both
of their centers of mass, and one of them is rotating about this axis at
twice the rotational frequency of the other. They now join hands and
rotate as a unit. Justify and use conservation of angular momentum
to calculate the percentage loss or gain in mechanical energy due to
the hand joining. Where does this energy come from or go to?

4. A particular jet has four engines, each of which develops 1.8×104 N of
thrust (force) at 7.46× 106 W. Calculate the minimum period in days
for the jet to make one revolution around the earth. (The radius of
the earth is 6.37× 106 m.)

Brief Answers:

1-4. See this module’s Problem Supplement, problems 5-8.
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