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Input Skills:

1. Given a force at right angles to an axis, calculate the torque it
produces about that axis (MISN-0-41).

2. Calculate the moment of inertia, of a given planar set of point
masses, with respect to a perpendicular axis (MISN-0-41).

3. State the relationship between the angular velocity of a point and
its radius and tangential velocity (MISN-0-9).

4. State Newton’s second law (MISN-0-15).

Output Skills (Knowledge):

K1. For circular motion, differentiate s = θr to derive the relation
between linear acceleration, angular acceleration, and radius.

K2. Starting from Newton’s second law, derive the relation between
torque, moment of inertia, and angular acceleration for a point
mass in circular motion.

K3. For circular motion with constant angular acceleration, derive the
general expressions for angular velocity and angular acceleration
as functions of time (involves integrals). Check the answers by
differentiation.

K4. For circular motion with constant angular acceleration, eliminate
the time variable between the angular displacement and angular
velocity expressions to obtain angular velocity as a function of
angular displacement and angular acceleration.

Output Skills (Problem Solving):

S1. For circular motion with constant angular acceleration, solve prob-
lems involving torque, moment of inertia, angular velocity, rota-
tional displacement, and time.
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ANGULAR ACCELERATION IN

CIRCULAR MOTION

by

J.Borysowicz and P. Signell

1. Two Agents of Change

In some instances of circular motion we observe only uniformity. The
motion of planets around the sun or of the moon around the earth are
examples. In many other cases, however, the rate of motion speeds up or
slows down with time. A spinning figure skater, a flywheel, or the wheel
of a bicycle will usually have an increasing or decreasing speed of rotation.
One cause of change in the speed of rotation is a change in the moment of
inertia of the rotating body. An example is arm extension by a spinning ice
skater. Another cause of change in circular motion is an applied external
torque. For example, a bicycle’s wheel will increase its rotational speed
due to torque exerted through the pressure of the bicyclist’s foot on the
pedal. In this module we will examine the relationship between applied
torque and circular motion.

2. Angular and Linear Acceleration

2a. Angular Acceleration: ~α = d~ω/dt. When the angular velocity
of a point moving with circular motion is not constant, we describe its rate
of change by introducing an angular acceleration in a manner analogous
to linear acceleration. Recall that acceleration in linear motion is defined
as the rate of change of velocity with time:

~a =
d~v

dt
. (1)

In a similar manner, the angular acceleration1 is defined as the rate of
change of angular velocity with time:

~α =
d~ω

dt
. (2)

1The Greek letter α, pronounced “al′ fa,” is universally used to denote angular
acceleration.
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Figure 1. The tangential compo-
nent ~aT , of acceleration ~a, is that
component perpendicular to ~r.

2b. Relationship of α to aT . For the case of circular motion we can
avoid the complexities of derivatives of vectors by relating the magnitude
of the tangential acceleration to the magnitude of the angular acceleration.
The tangential component of the acceleration is defined as that component
which is perpendicular to the radius vector, as shown in Fig. 1.

For circular motion, velocity is related to angular velocity by:2

v = ωr. (circular motion) (3)

This velocity is entirely tangential (~vT = ~v). Then taking the time deriva-
tive of Eq. (3) and using the chain rule:

aT =
dv

dt
= r

dω

dt
+ ω

dr

dt
= r

dω

dt
(circular motion) .

Thus:
aT = rα (circular motion). (4)

Note that in these equations the units of ω must be radians per unit time
and the units of α must be radians per unit time squared.

2c. Relationship of ~α to ~a. For a point that is ~r away from a cir-
cular rotator’s center of rotation, the point’s angular acceleration can be
calculated from its linear acceleration by the relation:

~α = (~r × ~a)/r2; (rigid rotator) .

2See “Kinematics: Circular Motion” (MISN-0-9) for a derivation of Equation (3).
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This can be derived by taking the time derivative of the definition of
angular velocity,3

~ω = (~r × ~v)/r2 ,

and then making use of: ~v× ~v = 0, ~α ≡ d~ω/dt and, for a point on a rigid
rotator, dr/dt = 0. Help: [S-9]

3. Producing Angular Acceleration

3a. τ = Iα. For a point mass in circular motion, for example on the
rim of a flywheel at radius r, we can easily relate torque to angular accel-
eration. We start with the mass’s tangential acceleration [see Equation
(4)]:

aT = αr .

By Newton’s second law, the tangential force FT is:

FT = mrα. Help: [S-1] (5)

so the magnitude of the torque ~τ is:4

τ = rFT = Iα . (6)

where I ≡ mr2 is the moment of inertia of that mass about the rotation
axis. Although it will not be shown here, the fact that α is the same for
all points in a rigidly rotating object allows one to prove that:5

τext = Iα. (7)

for the object as a whole. Here I is the total moment of inertia of the
object about the axis, obtained by summing the values of I for the object’s
component masses, and τext is the net external torque about the axis.

3b. Deriving ~τ = I~α. For a general object, angular acceleration is
related to torque by a vector equation. Consider a mass m in a rigid
rotator at position ~r from the center of rotation. If force ~F acts on this

3The more usual, but equivalent, definition of angular velocity is ω ≡ dθ/dt and
ω̂ ≡ (~r × ~v)/|~r × ~v|. Thus ~ω is perpendicular to the plane defined by ~r and ~v. The
quantity ~ω cannot be defined by a single equation: for example ~ω 6= dθ/dt because θ
is not a vector quantity.

4In vector notation, Eq. (6) is written: τ = rF⊥, where F⊥ is the component of ~F
perpendicular to the radius vector ~r.

5See “Torque and Angular Momentum in Circular Motion” (MISN-0-34).
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mass, we can take the cross product of ~r with both sides of Newton’s
second law to get:

~r × ~F = m~r × ~a .

Eliminating ~a for ~α and using I ≡ mr2 and ~τ ≡ ~r × ~F , get:

~τ = I~α .

The same relation could be obtained by integrating over all the mass
of an extended object, with ~τ becoming the external torque on the entire
object.6

Of course the torque, moment of inertia and angular acceleration
are all to be computed with respect to the system’s designated center of
rotation.

4. Constant Torque Case

4a. Angular Kinematics. The simplest applications of τ = Iα will
be those in which all three quantities τ , I, and hence α, are constant.
Just as in the case of linear motion,7 one can then easily integrate the
equations relating θ, ω, and α to obtain those quantities as functions of
time. First we integrate dω/dt = α, assuming constant α, to obtain:

ω = ω0 + αt; (constant α). (8)

Next we integrate dθ/dt ≡ ω (see above) to obtain:

θ = θ0 + ω0t+ αt2/2; (constant α). (9)

Eqs. (8) and (9) can easily be checked by differentiation plus evaluation
at t = 0.

4b. From a Dead Start, ω = (2αθ)1/2. We can eliminate the time
variable between Eqs. (7) and (8) for the case θ0 = ω0 = 0 and obtain
the useful relation:

ω = (2αθ)1/2; (from a dead start, constant α) .

6When ~τ and ~α are not in the same direction, I is a tensor quantity.
7See “Kinematics: Motion in One Dimension,” (MISN-0-7).
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4c. Constant-α and Constant-a Equations. Most of us find it easy
to remember the circular-motion constant-α equations by analogy with
the linear-motion constant-a equations:

Kinematics Magnitudes
Dead-Start

Position Velocity Velocity

s = s0 + v0t+ at2/2 v = v0 + at v = (2as)1/2

θ = θ0 + ω0t+ αt2/2 ω = ω0 + αt ω = (2αθ)1/2

Force/Torque, Energy, Power Magnitudes
Kinetic energy Force/Torque Constant-Velocity Power
Ek = mv2/2 F = ma P = Fv
Ek = Iω2/2 τ = Iα P = τω

Some of the equations shown in these two tables can be rewritten in vector
form so they have validity beyond linear and circular motion.
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PROBLEM SUPPLEMENT

1. The angular displacement of a particle moving in a circular path of
radius R is given as a function of time by:

θ(t) = at2 + bt+ c,

where a, b, and c are constants; θ is to be expressed in radians and t
in seconds.

a. What are the units of the constant a? Answer: 7

b. What are the units of the constant b? Answer: 4

c. What is the angular velocity of the particle at time t? Answer: 6

d. What is the particle’s angular acceleration at time t? Answer: 2

e. What is its (tangential) velocity at time t? Answer: 5

f. Is this tangential speed constant? Answer: 1

g. What is the tangential acceleration of this particle at time t? An-
swer: 3

h. Is this tangential acceleration constant? Answer: 8

2. A Volvo marine engine goes from 1800 rpm to 5400 rpm in 24 seconds.
Assume the engine’s moment of inertia is 100 ft lb s2. What average
torque is developed by the engine? Answer: 9 Help: [S-2]

3. Assume the mass of a coasting flywheel is 140 kg, essentially all located
at the rim at a radius of 1.2m from the axis of rotation. The bearings
are located at a radius of 4 cm and the initial angular velocity is 6 rad/s.
By the end of one minute, friction has decreased the angular velocity
to 5.4 rad/s.

a. The moment of inertia of the flywheel. Answer: 12

b. The flywheel’s average angular acceleration. Answer: 10
Help: [S-4]

c. The average frictional torque exerted by the bearings on the fly-
wheel. Answer: 13 Help: [S-5]

d. The total average frictional force exerted by the bearings on the
flywheel. Answer: 11 Help: [S-6]
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4. The flywheel of a miniature steam engine has a mass of 0.20 kg, located
almost entirely along the rim at a radius of 8.0 cm. While the flywheel
is rotating at 120 rpm it is decoupled from the engine and a braking
force of 0.050N is applied to the rim until the flywheel stops. For the
time period during which the braking occurs, determine the flywheel’s:

a. moment of inertia Answer: 16

b. angular acceleration Answer: 18

c. tangential acceleration of a point on the rim Answer: 15

d. total braking time Answer: 17 Help: [S-7]

e. total number of turns (a “turn” is one complete rotation) Answer:
14 Help: [S-8]

Brief Answers:

1. No

2. 2 a

3. 2 aR

4. rad/s

5. (2at+ b)R

6. 2at+ b

7. rad/s2

8. Yes

9. 1570 ft lb

10. −0.01 rad/s2

11. 50.4N, opposite to direction of flywheel velocity at bearings.

12. 201.6 kgm2

13. 2.016Nm, opposite to direction of flywheel angular velocity vector.

14. 4.02 turns
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15. −0.25m/s2

16. 1.28× 10−3 kgm2

17. 4.02 s

18. −3.13 rad/s2
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-3a)

Note that the vectors ~r and ~FT are at right angles so that θ is 90◦ in
the expression: |~r × ~FT | = rFT sin θ.

S-2 (from PS, problem 2)

τ = I α. Therefore, averaging over both sides (I is constant): τ̄ = I ᾱ.

Also: ᾱ =
∆ω

∆t
. Further Help: [S-3]

S-3 (from [S-2])

What are the units of angular velocity?
What are the units of frequency?
Which one is given in the problem?
Which one occurs in the equation you are using?
What is the conversion factor between them?
If you are unable to answer any of the above questions, see the Input
Skills reference in this module’s ID Sheet or see the Volume’s Index.

S-4 (from PS, problem 3b)

Do Problem 2 completely and successfully before attempting this one.

S-5 (from PS, problem 3c)

First calculate the torque exerted on the flywheel, without considering
where it is coming from.

S-6 (from PS, problem 3d)

The torque is exerted by the bearings at their surface of contact with
the flywheel.
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S-7 (from PS, problem 4d)

∆ω = α∆t. Also, see [S-2].

S-8 (from PS, problem 4e)

Under constant angular acceleration, θ = (1/2)αt2. How many radians
are there in a “turn”?

S-9 (from TX-2c)

We take the time-derivative of both sides of the beginning equation and
that yields the final equation. Here are the details.
(1) For the left-hand side of the equation:
Expand the left side, the angular velocity, in Cartesian Coordinates:
~ω = ωxx̂+ ωy ŷ + ωz ẑ.
Take the time-derivative of both sides, using Eq. (3) of MISN-0-1, and
using the fact that the Cartesian unit vectors are time-independent
(dx̂/dt = 0, etc.). Also make use of αx ≡ dωx/dt, etc. Since
αxx̂+ αy ŷ+ αz ẑ = ~α, this results in α as the answer for the left side of
the equation.
(2) For the right-hand side of the equation (and putting in our new left
side):

~α =
d

dt

(

~r × ~v

r2

)

= ~α =
d(~r × ~v)

dt

(

r−2
)

+ (~r × ~v)
d

dt
(r−2).

Now r is independent of time for our constant-radius motion so the last
term is zero and:

~α =
d(~r × ~v)

dt

(

r−2
)

=

(

d~r

dt
× ~v

)

(

r−2
)

+

(

~r ×
d~v

dt

)

(

r−2
)

.

The first term on the right side is (~v × ~v/r2) which is zero because the
cross product of any vector with itself is zero [see MISN-0-2, Eq. (4), for
the case θ = φ]. The second term is (~r × ~a)/r2. Then:
α = (~r × ~a)

(

r−2
)

.
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MODEL EXAM

1. See Output Skills K1-K4 on this module’s ID Sheet.

2. The flywheel of a miniature steam engine has a mass of 0.20 kg, located
almost entirely along the rim at a radius of 8.0 cm. While the flywheel
is rotating at 120 rpm it is decoupled from the engine and a braking
force of 0.050N is applied to the rim until the flywheel stops. For the
time period during which the braking occurs, determine the flywheel’s:

a. moment of inertia

b. angular acceleration

c. tangential acceleration of a point on the rim

d. total braking time

e. total number of turns

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 4.
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