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Input Skills:

1. Show: x(t) = Ae−γt sin (ωt + α) solves F = −kx− λv (MISN-
0-29).

Output Skills (Knowledge):

K1. Given the damped driven oscillator force, F = −kx − λv +
F0 cos (ωt), and the steady-state solution, x(t) = B(ω) +
sin [ωt + β(ω)], derive expressions for B(ω) and β(ω).

K2. Show that x(t) = xT (t) + xS(t) is a solution to the damped,
driven oscillator problem, where the “transient solution” xT (t) is
known to be a solution to the undriven case, and xS is the steady-
state solution.

K3. Derive the time-average steady-state power transferred into a
damped driven oscillator (from a cosine driving force):
Pave(ω) = (F

2
0 λω

2/2) [m2(ω2
0 − ω2)2 + λ2ω2]−1.

K4. Sketch Pave vs. ω in the vicinity of the resonant frequency of
a damped driven oscillator, both for a broad resonance and for
a narrow one. Label each curve as to relative size of damping
constant.

External Resources (Optional):

1. You might like to see an alternative presentation in some General
Physics textbook (for availability, see this module’s Local Guide).
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DAMPED DRIVEN OSCILLATIONS;

MECHANICAL RESONANCES

by

Peter Signell

1. Introduction

The concept of “resonance” is one of the most important in all of
science and technology. There are many processes where resonance is
essential: other processes where it is to be avoided at all cost. Included in
the former category are the parts of instruments which produce music; in
the latter, the recording and playback apparatus. In the former, the vocal
cords of a person speaking or a bird singing; in the latter, most parts of
the ear of a person or a bird listening. Here we assume the existence of a
Hooke’s Law type single-frequency driving force and examine the power
transfer relationships in a realistic model of driven devices.

2. Transient & Steady-State Equations

2a. Combining F = ma and the Oscillator Force. We combine
Newton’s second law, F = ma, with the damped driven oscillator force,

F = kx− λv + F0 cosωt,

to obtain the basic equation for the damped driven oscillator:

mx′′ + λx′ + kx− F0 cosωt = 0 (1)

where primes indicate derivatives with respect to time.

2b. Steady-State/Transient Separation. The unique solution to
this equation is1

x(t) = xt(t) + xs(t) (2)

where the transient part is

xt(t) = Ae−γt sin(ω1t+ α)

and the steady state part is

xs(t) = B(ω) sin[ωt+ β(ω)]

1See Appendix A.
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The amplitude A and phase α of the transient part can be specified by, for
example, displacement and velocity at time zero. However, the amplitude
B and phase β of the steady state part are independent of such conditions
and remain to be found.

2c. The Transient Solution. If Eq. (2) is substituted into Eq. (1) and
xt terms are separated from xs terms, one gets:

(mx′′t + λx′t + kxt) + (mx′′s + λx′s + kxs − F0 cosωt) = 0 (3)

Now it can be demonstrated2 that

mx′′t + λx′t + kxt = 0 (4)

if
xt(t) = Ae−γt sin(ω1t+ α)

where
γ ≡ λ/2m

ω1 ≡
√

ω2 − γ2

ω0 ≡
√

k/m

and A and α are still undetermined.

2d. The Steady State Equation. Without further ado we assume
Eq. (4) and write Eq. (3) as:

mx′′s + λx′s + kxs − F0 cosωt = 0 (5)

We offer two methods for the solution of this equation.

3. Solving the Steady-State Equation

3a. Algebraic Method. Substitute xs(t) = B sin(ωt+β) into Eq. (5)
and get:

(ω2

0 − ω2)mB sin(ωt+ β) + λωB cos(ωt+ β)− F0 cos(ωt) = 0 (6)

Now use the identity

cos(A−B) = cosA cosB + sinA sinB,

2See “Damped Mechanical Oscillations” (MISN-0-29).
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which should be on instant recall, with A = ωt+ β and B = β to get

cosωt = (sinβ) sin(ωt+ β) + (cosβ) cos(ωt+ β).

Put that into Eq. (6) and collect terms:

[(ω2

0 − ω2)Bm− F0 sinβ] sin(ωt+ β) + (λωB − F0 cosβ) cos(ωt+ β) = 0

Since the sine and cosine are independent functions of time, each of their
constant coefficients must separately be zero in order to make the sum of
the terms stay zero at all times.3 Then:

(ω2

0 − ω2)Bm = F0 sinβ (7)

λωB = F0 cosβ

Dividing these two equations gives tanβ and summing their squares gives
B.

3b. Phasor Method. 4 First, since xs(t) = B sin(ωt+ β),

Fs = mas = mx′′s = −ω2mxs

Fs = −kxs where k ≡ ω2m

so we can draw a phasor diagram for t = 0:

B
x

b

a
Fnet

w 2B

m Bw2 wB

`

`

`

v
`

Now draw a force-phasor diagram for t = 0, noting that each force phasor
is a constant times one of the phasors in the above diagram. At t = 0,

3See “Damped Mechanical Oscillations” (MISN-0-29).
4See “ SHM Phasors” (MISN-0-27).
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B
x

b

Fk

Fnet

kB

m Bw2

lwB

`

`

`

FDR

Fv

`

`

where ~Fk = −k~xs (opposite to ~xs)

and ~Fv = −λ~vs (opposite to ~vs).

Using
~Fnet = ~Fk + ~Fv + ~FDR

we equate components ‖ and ⊥ to ~Fnet and obtain Eqs. (7).

4. Average Power Dissipation

4a. Setting Up the Time-Average Integral. The time-average
steady-state power transferred into the oscillator from the driving force
can be determined via the power-force-velocity relation:5

P (t) = F (t)v(t)

Then over one period P the average power is:

Pave =
1

P

∫ P

0

P (t) dt =
1

P

∫ P

0

FDR(t)v(t) dt

where the driving force is used because we are trying to obtain the average
power expended by that force. Substituting FDR(t) and v(t):

Pave =
1

P

∫ P

0

F0(cosωt)Bω cos(ωt+ β) dt.

5See “Work,Kinetic Energy, Power” (MISN-0-20.
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Again use: cos(A+B) = cosA cosB − sinA sinB, now with A = ωt and
B = β:

Pave =
F0 ω

P

[

∫ P

0

cos2 ωt dt− sinβ
∫ P

0

cosωt sinωt dt

]

4b. Integrating. The second integral is zero, as can be easily seen by
writing it as:

∫ P

0

1

2
(sin 2ωt) dt

integrand

sin2 tw

t

P
: area is

obviously zero

The value of the first integral is P/2 because the average
value of cos2 is 1/2. This is easily seen by making use of the
fact that the average values of sin2 and cos2 are obviously equal:

cos 2 sin2

Then:
∫ 2π

0

cos2 x dx =

∫ 2π

0

sin2x dx

which can be used to evaluate the average value of cos2 x:

(cos2 x)ave =

∫ 2π

0
cos2 x dx

2π
=
1

2
·
∫ 2π

0
cos2 x dx

2π
+
1

2
·
∫ 2π

0
sin2 x dx

2π

=

∫ 2π

0
(cos2 x+ sin2 x) dx

4π
=

∫ 2π

0
(1) dx

4π
=
2π

4π
=
1

2
.
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Then:

Pave =
F0Bω cosβ

2

4c. Eliminating the Phase Angle. We can evaluate cosβ from

cosβ =
1

√

1 + tan2 β
=

[

1 +
m2(ω2

0 − ω2)2

λ2ω2

]−1/2

=
λω

[λ2ω2 +m2(ω2
0
− ω2)2]

1/2

However, rather than working out cosβ from tanβ
as above, physicists often use a triangle. If tanβ =
a/b than a and b can be drawn as the legs of
a right-angle triangle shown in the sketch at the
right. The hypotenuse is obviously

√
a2 + b2 and

so cosβ = b/
√
a2 + b2.

b

b

a

In our case:

tanβ =
m(ω2

0 − ω2)

λω

hence

cosβ = (λω)/
√

λ2ω2 +m2(ω2
0
− ω2)2

Using either derivation, the final answer is:

Pave =
F 2

0 ω
2λ

2 [m2(ω2
0
− ω2)2 + λ2ω2]

5. Resonances

5a. Power Spectrums with Resonances. The resonant frequency
is ω0. If ω is swept through a range of frequencies, we get:
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Broad Resonance

(large )l
Narrow

Resonance

(small )l

w0

w w

P ( )ave w

w0

5b. Resonance Width (Approximate). It is easy to derive a for-
mula for the width of the resonance in the “narrow width approximation.”
The width Γ of the resonance is defined at half the maximum resonance
height h:

P ( )ave w

w0 w

h

h_
2

G

Then:

Pave(ω1/2) =
1

2
Pave(ω0)

Substituting in both sides:

F 2
0 ω

2

1/2λ

m2(ω2
0
− ω2

1/2)
2 + λ2ω2

1/2

=
1

2
· F

2
0 ω

2
0λ

λ2ω2
0

,

which results in:
ω2

0 − ω2

1/2 = ±λω1/2/m.

Factor the left hand side:

ω2

0 − ω2

1/2 = (ω0 − ω1/2) · (ω0 + ω1/2)
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and use the narrow width approximation

ω0 ≈ ω1/2

to get:
ω0 + ω1/2 ≈ 2ω0,

ω0 − ω1/2 = ±2λ/2m,

ω1/2 = ω0 ± λ/2m.

The full width at half maximum is then:

Γ = λ/m.

This shows that the width is directly proportional to the damping
strength. The average power put into the oscillator by the driving force
is often written:

Pave(ω) =
F 2

0 Γ/(8m)

(ω − ω0)2 + (Γ/2)2

but you should realize that this is only valid in the narrow-width ap-
proximation. An interesting relation between the height and width of the
resonance can be obtained by evaluating the height at ω0:

Pave(ω0) =
F 2

0

2Γm
,

so the height varies inversely as the width.

5c. What Happens as Damping Goes to Zero. A dramatic exam-
ple of damping going to zero is a car wheel that is coming loose. As the
damping constant fades, power gets increasingly fed in at the resonant
frequency of vibration of the wheel until it is too much for the restraining
system. Crack!

5d. Resonances as Complex-Plane Poles. A broad resonance is
the shoulder of a far-away pole in the complex plane. As the damping
constant decreases, the pole moves closer to the real axis. This causes the
shoulder to narrow and heighten. In fact, the width of the resonance is
the distance of the pole from the real axis. These matters are discussed
and illustrated elsewhere.6

6See “Resonances and Poles: Relationship Between the Real and Imaginary Worlds”
(MISN-O-49).

12



MISN-0-31 9

Acknowledgments

Preparation of this module was supported in part by the National
Science Foundation, Division of Science Education Development and
Research, through Grant #SED 74-20088 to Michigan State Univer-
sity.

A. Solving Inhomogeneous Differential Equations

There is a general approach to equations like (1), which are called
inhomogeneous because not all terms contain the solution x (here, the
final term omits it). The general solution is the sum of two terms: (a) the
“homogeneous-part” solution that is adjusted to match boundary condi-
tions; and (b) an entire-equation solution that has no adjustable parame-
ters. In our case, the homogeneous part of Eq. (1) is Eq. (4): it’s solution,
following Eq. (4), shows the two adjustable constants. The unadjustable
entire-equation solution, Eq. (7), obeys equation (5). The sum of these
two “solutions” is our solution to the entire equation.

B. Resource Supplement

We suggest you look in General Physics textbooks (for availability, see
this module’s Local Guide under the subjects: (1) Forced Oscillations; and
(2) Mechanical Resonances. There is usually at least a section on these
topics. Skim the words or read them carefully, as is your pleasure, but we
suggest you examine the illustrations carefully. In this subject it may be
helpful to see other authors’ presentations. You might also be interested
in looking at the presentations in Mechanics textbooks such as Barger and
Olsson, Classical Mechanics, Section 1-9, and Marion, Classical Dynamics

of Particles and Systems, Section 4.2.
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LOCAL GUIDE

You will find many General Physics textbooks in our Consulting Room
bookcase.
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