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Input Skills:

1. Vocabulary: potential energy curve (MISN-0-22), simple harmonic
motion, displacement, equilibrium, amplitude, phase, initial time,
angular frequency, period, frequency (MISN-0-25).

2. Calculate quantities such as displacement, velocity, force, angular
frequency, and potential energy for SHM (MISN-0-25).

3. Find solutions of the equation: d2x/dt2 + ω2 x = 0.

Output Skills (Knowledge):

K1. Define: equilibrium position, displacement from equilibrium posi-
tion, initial phase, restoring force, linear restoring force, Hooke’s
law force.

K2. State Hooke’s law, identifying all quantities, and describe the lim-
itations on its validity.

K3. Start with Newton’s second law and Hooke’s law and use them
to obtain the equation of motion for a simple harmonic oscillator.
Find its solutions and derive the relationship of frequency and
period to force constant and mass.

K4. Define angular frequency, frequency and period in terms of the
mass m and force constant k for a simple harmonic oscillator.

Output Skills (Problem Solving):

S1. Solve SHM problems involving an equilibrium position that is a fi-
nite distance from the origin, and with a finite initial phase. Solve
for the force-constant, angular fequency, period, initial phase, and
maximum acceleration in terms of given quantities, symbolically
and numerically. Solve for the following functions of time as equa-
tions with symbols, numbers, and/or graphs as requested: dis-
placement, velocity, acceleration.
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SIMPLE HARMONIC MOTION:

SHIFTED ORIGIN AND PHASE

by

Kirby Morgan

1. Dynamics of Harmonic Motion

1a. Force Varies in Magnitude and Direction. The force asso-
ciated with simple harmonic motion1 is probably a more complex kind
of force than any you have encountered so far in dynamics. First you
met forces of constant magnitude and direction. Then there was the cen-
tripetal force2 which varied in direction but had a constant magnitude.
Still another was the impulsive force,3 whose direction was constant but
whose magnitude varied. Here, the force associated with harmonic motion
varies both in magnitude and direction.

1b. Potential Energy For a Restoring Force. The potential energy
function Ep for a particle undergoing harmonic motion can be shown to
have a minimum at its equilibrium position. Figure 1 shows the potential
energy curve for a particle oscillating between the limits x1 and x2, with
x0 being the equilibrium position. The force acting on the particle is
related to the potential energy by

F = −
dEp

dx
(1)

and thus is represented at any point by the negative value of the slope
at that point. The slope is zero where the potential energy is minimum
(at x = x0), therefore the force is zero at the equilibrium position x0.
Moreover, since the slope is positive (negative) to the right (left) of x0, the
force always points towards x0 Help: [S-1] ,4 making it a point of stable
equilibrium.1 This force is called a restoring force because it always acts
to accelerate the particle back toward the equilibrium position.

1c. Potential Energy for SHM. The potential energy of a particle
undergoing simple harmonic motion about the point x0 is:

Ep =
1

2
k(x− x0)

2. (2)

1See “Simple Harmonic Motion: Kinematics and Dynamics” (MISN-0-25).
2See “Centripetal and g Forces in Circular Motion” (MISN-0-17).
3See “Momentum, Force and Conservation of Energy” (MISN-0-15).
4For help, see sequence [S-1] in this module’s Special Assistance Supplement.
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x1 x0 x2
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x

Figure 1. Potential Energy for a Restoring Force.

Given that the potential energy for SHM is Ep = kx2/2 for displacement
about the point x = 0,1 Eq. (2) is the more general expression for motion
about x = x0. The potential energy curve for SHM (see Fig. 2) has
a minimum at the equilibrium position and is symmetrical about that
point. Thus the limits of the motion, the points where the potential
energy equals the total energy, are equally spaced about the equilibrium
position. The force is found from the potential energy:

F = −dEp/dx

F = −k(x− x0). (3)

which is the general form of the SHM force.

2. The Force

2a. Hooke’s Law. The relation F = −k(x − x0) was first found em-
pirically by Robert Hooke in the 17th century and so is known as Hooke’s

x0

E = ½k(x - x )p 0
2

Etotal

x
Figure 2. Potential energy for
SHM.
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x0m

x

Figure 3. Mass hung on a spring. Note that
the position of stable equilibrium is at x0, not
at the origin.

law. Hooke found that, for springs and other elastic bodies, the restoring
force was proportional to the displacement from equilibrium provided the
elastic solid was not deformed beyond a certain point called the elastic
limit. Past this point the elastic body will not return to its original shape
when the applied force is removed. It turns out that Hooke’s law holds
for many common materials and can be applied to almost any situation
where the displacement is small enough.5 Since by Hooke’s law the force
is linearly proportional to the displacement, it is called a linear restoring
force or, equivalently, a “Hooke’s law force.” The proportionality constant
k is known as the “force constant.”

2b. Example: Mass Hung on a Spring. Consider now a mass m
attached to a spring of negligible mass and force constant k. The spring is
hung vertically as shown in Fig. 3. The force acting to stretch the spring
is just the weight of the mass, i.e. mg. When the mass is hung from
the spring it causes the spring to stretch from its original length until the
magnitude of the restoring force equals the weight:

mg = |F | = kx0 (4)

Here we have chosen x0 as the distance the mass stretches the spring. The
mass-spring-gravity system thus has an equilibrium point at x = x0 and
the resultant force is zero there. Now if the mass is displaced from x0,
Hooke’s law states that it will experience a force F = −k(x− x0) acting
so as to return the mass to x0 (so long as the elastic limit of the spring is
not exceeded).

5See “Small Oscillations” (MISN-0-28).
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3. Equation of Motion

3a. Displacement Equation from Hooke’s Law. Hooke’s law, F =
−k(x− x0), and Newton’s second law, F = ma, can be combined to find
the displacement equation for SHM. Writing the acceleration as d2x/dt2,
the equation of motion is:

m
d2x

dt2
= −k(x− x0), (5)

or:
d2x

dt2
+

k

m
(x− x0) = 0. (6)

Letting ω2 ≡ k/m and X ≡ x − x0, Eq. (6) can be rewritten in terms of
X, the displacement from equilibrium:

d2X

dt2
+ ω2X = 0 (7)

which has the general solution6

X = a cosωt+ b sinωt (8)

or the totally equivalent general solution: Help: [S-2]

X = x(t)− x0 = A cos(ωt+ δ0). (9)

This is just the displacement equation for a simple harmonic oscillator,
where X = x−x0 is the displacement, A is the amplitude, ω is the angular
frequency, and δ0 is the “initial phase.”

3b. ω, ν and T in Terms of Force Constant k.. The angular
frequency, ω, frequency, ν, and period, T , can all be expressed in terms of

6If you have not encountered this before, here is all you need to know about general
solutions of equations like Eq. (7) for this module: If the highest derivative in the
equation is a second derivative, and if all terms in the equation contain the unknown
function on the right side of each term, then any solution that satisfies the equation
is in fact the unique solution to the equation if the solution contains two independent
constants undetermined by the equation. The two undetermined constants in Eq. (8)
are a and b. The statement is very powerful, since it says that you need to know
nothing about differential equations: just find a function with two constants that
satisfies the equation (you must merely take derivatives) and you are guaranteed that
you have the only solution! Equation (8) obviously satisfies the criterion. Note: If the
highest derivative in such an equation is a first derivative, then only one undetermined
constant is needed.
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the force constant k and mass m. Since ω2 = k/m, the angular frequency
is

ω = (k/m)1/2. (10)

The period is found to be

T =
2π

ω
= 2π(m/k)1/2, (11)

while the frequency is

ν =
1

T
=

1

2π
(k/m)1/2. (12)

Observe that ω, ν, and T all depend only on k andm and are independent
of the amplitude of the oscillations.

¤ What would ω, ν, and T be when m = 3kg and k = 48N/m?
Help: [S-3]

3c. Mass Hung on a Spring. Suppose a spring of negligible mass
and of force constant 9.8N/m hangs vertically and has a mass of 0.10 kg
attached to its free end. We define the direction of positive displacement
x as being downward. The equilibrium point is found from Eq. (4) to be

x0 =
mg

k
=

(0.10 kg)(9.8m/s2)

9.8Nm
= 0.10m

and Hooke’s law can be written:

F = −(9.8N/m) (x− 0.10m).

Suppose the mass is initially pulled up a distance 0.2m above its equilib-
rium position and then released. It will undergo SHM with its equation
for displacement being

X(t) ≡ x(t)− x0 = 0.20m cos

(

9.9

s
t+ π

)

where the angular frequency, 9.9 radians/s, was found from
Eq. (10). Help: [S-4]7 Note that δ0 = π radians = 180◦ because the
mass was released from the position of maximum negative displacement
(hence zero velocity). Help: [S-5]

7We normally omit the word “radians” in stating units; so when you see ω given in
inverse seconds you should always take it to mean “radians per second.”
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Figure 4. The oscillator point’s po-
sition at time zero defines the oscilla-
tor’s initial phase δ0.

4. Scaled Phase Space

It is often useful to make a pictorial representation of the simultane-
ous values of an oscillator’s position and velocity. If we scale the velocity
axis by a factor of (1/ω), the point representing the values of the two
variables traverses a circle as time progresses (see Fig. 4). In fact, it is
easy to see that the point goes around the circle clockwise with the same
frequency as the oscillator. Thus in the time it takes the oscillator to exe-
cute one complete cycle of its straight-line motion, the point representing
it in the scaled phase space goes around its circle once. Then the “angular
velocity” ω in the equation for the oscillator’s linear displacement is just
the angular velocity of the oscillator’s point as it goes around its circle
in the scaled phase space. Finally, on the scaled phase space diagram we
can easily plot the oscillator’s phase angle at time zero, its “initial phase,”
δ0(see Fig. 4).

5. Usefulness of Hooke’s Law

Hooke’s law, an empirical relation describing the elasticity of solids,
has proved to be very helpful in the quantitative description of the SHM of
such solids. Moreover the derivation of the equation of motion gives valu-
able insight into more complicated systems such as those where frictional
forces are present.8

Acknowledgments
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Science Foundation, Division of Science Education Development and

8See “Damped Mechanical Oscillations” (MISN-0-29).
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Glossary

• elastic limit: the point beyond which an elastic body does not obey
Hooke’s law.

• equilibrium position: the position where the force is zero so a particle
put there would not move.

• force constant: the magnitude of the proportionality constant be-
tween force and displacement in Hooke’s law.

• Hooke’s law force: a restoring force that is linearly proportional to
displacement from equilibrium (a “linear restoring force”).

• initial phase: the phase of an oscillation at time zero.

• linear restoring force: a restoring force that is linearly proportional
to displacement from equilibrium.

• restoring force: a force that always acts toward an equilibrium posi-
tion.
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PROBLEM SUPPLEMENT

Problem 8 also occurs in this module’s Model Exam.

Note: Wherever appropriate, take the direction of stretching the spring
as the direction of positive displacement.

1. One end of a horizontal spring is fixed, the other end is found to be
moved 8.0 cm from its equilibrium position by a force of 20.0N. A mass
of 4.0 kg is then attached to that end of the spring and is pulled along a
frictionless surface to a point 6.0 cm from the equilibrium position. The
mass is then released at time t = 0 and it executes simple harmonic
motion.

a. Find the force constant of the spring.

b. What is the force exerted by the spring on the mass just before it
is released?

c. Write the equation for the displacement of the mass as a function
of time after it is released.

d. Calculate the period and frequency of the oscillations.

2. A 3.0 kg mass hangs from a spring. A 0.50 kg body hung below the
mass stretches the spring 5.0 cm farther. The body is then removed
and the mass starts oscillating. Find the frequency of the motion.

3. A particle with mass 200.0 gm experiences a force whose associated
potential energy function is Ep = (4.0 J/m2) · (x− 0.20m)2. Find the
angular frequency of the motion.

4. A 50.0 kg woman standing on the end of a diving board caused it to
be lowered by 30.0 cm and it then oscillated up and down with her on
it. Assuming the restoring force of the board was linear, calculate the
number of times she went up and down in 2.2 s.

5. A car can be considered to be mounted on a vertical spring for purposes
of describing its up and down motion. If the springs of a 1.5× 103 kg
car are adjusted so that the vibrations have a frequency of 3.0Hz, what
is the spring’s force constant? Find the vibrational frequency if four
passengers, averaging 75 kg each, ride in the car.

12
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6. An object hung on a vertical spring stretches it 15 cm. The object is
then pulled down another 20.0 cm and released.

a. Find the displacement equation for the object.

b. Find the velocity and acceleration as functions of time.

7. A vertically hanging spring has a force constant of 150.0N/m. A 5.0 kg
mass is now hung from the end of the spring and the mass settles down
to a new equilibrium position x0. Finally, the mass is displaced 0.20m
below its equilibrium position and given an initial velocity of 2.0m/s
downward.

a. Write Hooke’s law for the mass-spring system and calculate the
displacement when the force is 30.0N.

b. Find the displacement equation.

c. Calculate the period.

8. An object undergoing SHM has a mass of 2.0 kg and force constant
60.0N/m. Its equilibrium position is at x0 = 0.30m.

a. Write Hooke’s law and find the position of the object when the force
on it is 25N.

b. Find the displacement equation if the object: (1) has zero velocity
when it is at the point x = 0.80m; and (2) at time zero is at the
equilibrium position and is heading toward negative displacements.
Then find x at t = 1.0 s.

c. Calculate the period of the oscillations.

Brief Answers:

1. a. k =
−F

x− x0

= −
(−20 N)

0.08m
= 250N/m

b. F = −k(x− x0) = −(250N/m)(0.06m) = −15N

c. ω =

(

250N/m

4.0 kg

)1/2

= 7.9 rad/s

x(t) = 0.060m cos

(

7.9

s
t

)
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d. T =
2π

ω
=

2π

7.9/ s
= 0.80 s; ν =

1

T
= 1.3Hz

2. k =
−F

x− x0

=
mg

x− x0

=
(0.50 kg)(9.8m/s2)

0.05m
= 98N/m

ν =
1

2π

(

98N/m

3.0 kg

)1/2

= 0.91Hz

3. Ep =
k

2
(x− x0)

2
= 4.0 J/m2 (x− x0)

2

k

2
= 4.0 J/m2 ⇒ k = 8.0N/m

ω =

(

8.0N/m

0.20 kg

)1/2

= 6.3 rad/s

4. k =
−F

x− x0

=
mg

x− x0

=
(50 kg)(9.8m/s2)

0.30m
= 1600N/m

T = 2π

(

50 kg

1600N/m

)1/2

= 1.1 s

# =
2.2 s

T
=

2.2 s

1.1 s
= 2 times

5. k = m(2πν)2 = (1500 kg) [2π(3.0Hz)]
2
= 5.3× 105 N/m

ν =
1

2π

(

k

mtotal

)1/2

=
1

2π

(

5.3× 105 N/m

1800 kg

)1/2

= 2.7Hz

6. x0 =
mg

k
⇒

k

m
=

g

x0

=
9.8m/s2

0.15m

ω =

(

9.8m/s2

0.15m

)1/2

= 8.1 rad/s

a. x− 0.15m = 0.20m cos

(

8.1

s
t

)

b. v =
dx

dt
= (0.20m)(8.1/ s)

[

− sin

(

8.1

s
t

)]

a =
dv

dt
= (−1.6m/s)

(

8.1

s

)

cos

(

8.1

s
t

)

= −13m/s2 cos

(

8.1

s
t

)

.
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7. x0 =
mg

k
=

(5.0 kg)(9.8m/s2)

150N/m
= 0.33m

a. F = (−150N/m)(x− 0.33m)

displacement = (x− 0.33m) =
−30N

−150N/m
= 0.20m

b. ω =

(

150N/m

5.0 kg

)1/2

= 5.5 rad/s

x− 0.33m = A cos

(

5.5

s
t+ δ0

)

v =
dx

dt
= −A(

5.5

s
) sin

(

5.5

s
t+ δ0

)

at t = 0: 0.20m = A cos δ0

2m/s = −A

(

5.5

s

)

(sin δ0)

(0.20m)2 +

(

2m/s

5.5/ s

)2

= A2(cos2 δ0 + sin2 δ0) = A2

A = 0.42m

δ0 = cos−1

(

0.20m

0.42m

)

= 62◦ = 1.1 rad

x− 0.33m = 0.42m cos

(

5.5

s
t+ 1.1 rad

)

c. T =
2π

ω
=

2π

5.5/ s
= 1.1 s

8. a. F = (−60N/m)(x− 0.30m)

F = 25N; x = −0.12m

b. x− 0.30m = 0.50m cos

(

5.5

s
t+

π

2

)

; x(1.0 s) = 0.65m

c. T = 1.1 s
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-1b)

x0

Ep

x

dE___
dx

< 0
p dE___

dx
> 0

p

The force curve is related to the potential energy curve by F =
−dEp/dx:

F

x

F > 0

F < 0

Now draw the force curve for: Ep =
1

2
k(x− x0)

2. Help: [S-6]
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MISN-0-26 AS-2

S-2 (from TX-3a)

cos(θ + φ) = cosφ cos θ − sinφ sin θ

X = A cos(ωt+ δ0) = A[cos δ0 cosωt− sin δ0 sinωt]

Let: a ≡ A cos δ0; b ≡ −A sin δ0.

Then: X = a cosωt+ b sinωt.

S-3 (from TX-3b)

ω =

(

k

m

)1/2

=

(

48N/m

3kg

)1/2

= 4 rad/s

T =
2π

ω
=

2π

4 s
=
π

2
s; ν =

1

T
=

1

π/2 s
=

2

π
Hz

S-4 (from TX-3c)

ω =

(

k

m

)1/2

=

(

9.8N/m

0.1 kg

)1/2

= 9.9 rad/s

S-5 (from TX-3c)

x = A cos(ωt+ δ0)

v = dx/dt = −Aω sin(ωt+ δ0)

at t = 0; v = −Aω sin δ0

if v = 0 then δ0 = 0 (or nπ); if v 6= 0 then δ0 6= 0

for δ0 6= 0; Xi = A cos δ0 (t = 0)

| cos δ0| < 1: Xi < A

i.e. amplitude is larger than initial displacement Xi.
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S-6 (from [S-1])

F = −dEp/dx = −k(x− x0)

x0

x

F

dF__

dx
= -k
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MODEL EXAM

1. See Output Skills K1-K4 in this module’s ID Sheet.

2. An object undergoing SHM has a mass of 2.0 kg and force constant
60.0N/m. Its equilibrium position is at x0 = 0.30m.

a. Write Hooke’s law and find the position of the object when the force
on it is 25N.

b. Find the displacement equation if the object has zero velocity at
the point x = 0.80m. Find x at t = 1.0 s.

c. Calculate the period of the oscillations.

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 8.
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