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POTENTIAL ENERGY,

CONSERVATION OF ENERGY

by

Joe Aubel, University of Southern Florida

1. Introduction

In this module we are primarily concerned with the concept of con-
servation of energy. We first introduce the concept of potential energies
to replace those line integrals in the work definition that produce path-
independent work. We then state the Law of Conservation of Energy,
which is perhaps the most useful unifying concept of science.

Understanding Conservation of Energy will give you insight into
many ordinary experiences from everyday life (such as why some people
get fat!). You will also be better prepared to analyze the “energy crisis”
and some of the proposed cures. (Don’t waste time with schemes that
promise more energy out than you put in!) In addition, you will develop
an extremely powerful tool for solving a large class of physics problems
with a minimum of mathematical manipulation. In order to further re-
strict the mathematics needed, we shall only deal with one-dimensional
motion in this module.

2. Potential Energy

2a. Overview. When work is performed on a system,1 and the energy
thus transferred into the system is stored internally in such a way that it
can later be converted back to mechanical energy by reversing the storage
process, we call the stored energy “potential energy.” That is because it
has the potential to be recovered by reversing the storage process. Good
examples are the energy stored through raising water against the force
of gravity and the energy stored through compressing a spring in a me-
chanical clock. In the case of the elevated water the stored energy can be
reclaimed to run electrical generators while in the case of the clock spring
the stored energy is used to move the hands.

2b. Frictional Forces. Work done against the force of friction does
not cause a gain in mechanical potential energy because the process is not

1See “Work, Power, Kinetic Energy” (MISN-0-20).
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mechanically reversible. For example, running a car at constant speed in
reverse gear does not enable you to regain the mechanical energy you
previously expended running the car at the same speed in forward gear.
In fact, running the car in reverse gear requires the same expenditure of
energy as running it in forward gear. While running the car at constant
speed, in either gear, all of the energy expended goes into overcoming
friction. Help: [S-2]

2c. Conditions for Potential Energy. There are several equivalent
ways of describing the situations in which potential energy can be gained
or lost. Two of them are: (i) the work done is reversible; and (ii) the
work integral is independent of path.

2d. A Conservative Force. When the above conditions are fulfilled,
the storage force involved in the energy storage is universally said by
professionals to be a “conservative” force. By this they mean that the
energy involved is conserved, with no losses, as mechanical energy. The
energy-storage force is not the force you apply as you do work on the
system; rather, it is an opposing force that is internal to the system, a
loss-less mechanical storage force. The main two examples we will deal
with here are the force of gravity and the restoring force of springs.

Whether the force is “conservative” or not, total energy is always
conserved.

2e. Potential Energy Difference. The work done by a lossless me-
chanical storage force whose point of application moves from A to B is:

WA→B =

∫ B

A

~Fc · d~s.

where the subscript “c” explicitly shows that the force is a “conservative”
one. The negative of this work is the work done on the force and hence
is the change in stored energy. We call this change the “potential energy
difference, ∆Ep, at point B relative to point A”:

2

∆Ep ≡ −

∫ B

A

~Fc · d~s = −Wc,A→B (1)

Note the significance of the signs of the terms: because the line integral
does not depend on path, WA→B = −WB→A: i.e., the work done against
~F in moving from A to B can be retrieved by moving back from B to A.

2Some authors use U , V or PE. Our notation, Ep, emphasizes that this is just a
particular form of energy.
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Thus the net path-independent work done around any closed path is zero.
Actually, this should be obvious since one possible path from a point A to
the same point A is no movement at all and that certainly involves zero
work.

2f. Path-Dependent Work. When a non-conservative force, ~Fnc, is
involved, the value of the line integral,

∫ B

A

~Fnc · d~s,

depends on the actual path of integration. Help: [S-1] The integration
path in such cases must follow the actual physical path taken by the point
of application of the force.

3. The Potential Energy Function

3a. Standard Reference Points. We often dispense with the cum-
bersome A → B terminology and choose a “standard reference point,” a
point which often turns out to be the lower limit of the integral in practi-
cal problems. We then integrate from this point as the lower limit to an
arbitrary space point (x,y,z) as the upper limit of the integral. The result-
ing function of (x,y,z) is called the “potential energy function” and, for
an object at (x,y,z), Ep(x, y, z) is called the object’s “potential energy.”

If you have a potential energy function and you wish to know the
difference in potential energy between a space point and the reference
point, merely evaluate the function at the point in question. If you wish
to know the difference in potential energy between the point in question
and a point that is not the reference point, merely evaluate the function
at both points and take the difference. If you see a potential energy
function and you are uncertain as to the reference point that was used to
generate it, just set the potential energy function equal to zero and solve
for (x,y,z). That will be the reference point that was used.

3b. Gravitational Potential Energy. Near the surface of the earth,
the gravitational force on mass m (i.e., its weight) is essentially constant
and is given by m~g. Choosing a coordinate system with unit vectors x̂,
ŷ, and ẑ along east, north and up, respectively, and choosing the coordi-
nate origin (wherever we might have put it) as the reference point, the
gravitational potential energy at the point z0 is:

Ep,grav(z0) = −

∫ z0

0

m(−g) dz = mg

∫ z0

0

dz = mgz0 .
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where z0 is height above the coordinate origin (which we have taken as
the zero of potential energy for this case). We usually prefer to talk about
the potential energy at some point z so we make a change of notation in
the equation above to get the usually-used form:

Ep,grav(z) = −

∫ z

0

m(−g) dz′ = mg

∫ z

0

dz′ = mgz . (2)

where z is now height above the coordinate origin, our chosen zero of
potential energy. The variable z′ is called the “dummy variable of inte-
gration.” Help: [S-30]

Suppose an object of mass m is located at the point (x1,y1,z1) and
is then moved to the point (x2,y2,z1 + h). Using Eq. (2) we find that its
increase in gravitational potential energy is just mgh. Note also that this
is equal to the work done by an outside force ~F = mgẑ that raises the
massm through height h against the gravitational force that is pulling the
mass and the earth toward each other. So mgh is called the gravitational
potential energy of the mass m at height h above some coordinate origin,
the reference level we have chosen.

Thus a typical concrete block with a weight of 175N will have a
potential energy of 175Nm relative to your toe if you are holding it at a
height of 1.00 meter above your toe.

Note that the gravitational potential energy in Eq. (2) is not a prop-
erty of the object of mass m: instead, it is a property of the object-plus-
earth system and that system’s gravitational interaction. The gravita-
tional potential energy of that system increases when the distance be-
tween the object and the earth is increased, and it decreases when that
distance is decreased.

3c. Other Illustrative Forces.

1. Consider a conservative force of the form Fc = −kx, a spring-type
force, acting on some particle. Using Eq. (1):

Ep = −

∫ x

0

−kx′ dx′ = kx2/2. (3)

Just looking at the result, it is clear that the reference point is x = 0
since that is the point where Ep = 0.

2. Consider Fc = k/r2. Using Eq. (1):

Ep = −

∫ r

∞

k/r′2 dr′ = k/r. (4)

8
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The reference point, the point where Ep = 0, is at infinity, so Ep

represents the work that is done by Fc on a particle as it moves from
any point at radius infinity to any point at radius r.

4. Conservation of Energy

Many of the great turning points in the history of physics have been
characterized by the discovery of situations that appeared at first to vio-
late Eq. (1). But, in every case, it has been found that some form of Ek

or Ep had been overlooked and total energy was actually conserved. We
can write Conservation of Energy this way:

The total energy in a system at time t
+

the energy entering the system during time ∆t

= (5)

the total energy in the system at time t+∆t
+

the energy leaving the system during time ∆t.

Note the close analogy with your financial affairs:

Your total money at the beginning of some time interval
+

money you acquired during the time interval

=

money you have at the end of the time interval
+

money you spent during the time interval.

Just as “the money you have” at a given time may be stored in
various places and in various forms, so “the energy in a system” may be
stored in many forms. Help: [S-23] Fortunately, we need only consider
those forms that change for systems we study during the time interval
being considered. We will only study two forms here: kinetic energy and
mechanical potential energy.

¤ Rephrase each of the four terms in Eq. (5) in terms of the change in
a system’s kinetic energy, ∆Ek, the change in its potential energy, ∆Ep,
and the work done on the system by non-conservative forces, Wnc,on.
Help: [S-16]
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¤ Suppose we have a 60.0 kg box that we wish to unload from a truck.
Suppose this will require lowering the box through a height of 1.0m. Use
kinematics to find the speed of the box just before hitting the ground if
the box is simply pushed off the end of the truck. Help: [S-14]

¤ In the above exercise assume that the velocity of impact is unaccept-
able, so we must find a gentler way of unloading the box. It is too heavy
to lift by hand, but the truck is equipped with a ramp that is 3.0m long.
Use Eq. (5) and proper problem solving techniques to find the average
force up the incline, F , that must be applied to the box to let it arrive at
the bottom of the incline with negligible speed. Help: [S-15]

5. Examples

5a. Energy in the Morning.

Your total energy in the morning
+

energy taken in during the day (from food, etc.)
=

your total energy at the end of the day.
+

energy leaving during the day (work, heat, etc.)

Note that significant increases in internal energy are stored as fat!

5b. Concrete Block Drops on Toe. Consider what would happen
if you let go of the concrete block mentioned near the end of Sect. 3b.
It started with 175 J of gravitational Ep relative to your toe. The only
significant force on the block while falling is mg, which is conservative, so
when the block first touches your toe it will have Ek = 175 J. A short time
later the block is at rest at h = 0 so it has Ek = 0 and Ep = 0. At first
glance it appears that 175 J of energy was “lost.” Actually, this energy
went into breaking chemical bonds (change in chemical potential energy)
and into random kinetic energy of molecules (increase in temperature).

5c. Box Slides Down Incline. A box slides 5.0m down a 36.87◦

incline in a region where g is 9.8m/s2. The velocities of the box at the
beginning and end of this interval are 4.0m/s and 6.0m/s, respectively,
down the incline.

10
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¤ Find the coefficient of friction, assuming it is independent of velocity:

L = 5.0m
θ = 36.87◦

v0 = 4.0m/s
v = 6.0m/s
g = 9.8m/s2

µ = ? q q

Lv0

f

v

N

mg

From Eq. (5):

(mgh+
1

2
mv2

0) + 0 =
1

2
mv2 + fL,

where f is the frictional force and h is L sin θ. From Newton’s second law:

N = mg cos θ.

Then:

µ =
f

N
=
mg sin θ −m(v2 − v2

0)/(2L)

mg cos θ

= tan θ −
(v2 − v2

0)

2Lg cos θ

=
3

4
−
(36m2/ s2 − 16m2/ s2)

2(5m)(9.8m/s2)(0.80)
= 0.49 .

5d. Other Examples. Potential energy curves are useful in analyz-
ing motion and can be used to display complete information about the
dynamical motion of a one-dimensional conservative system.3 The appli-
cation of conservation of energy to fluids is the basis of fluid dynamics.4

Conservation of energy is used to determine the motion of oscillating sys-
tems.5 Energy concepts are applied to the analysis of the rotation of rigid
bodies.6

Acknowledgments
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3See “Potential Energy and Motion; Potential Curve, Turning Points” (MISN-0-22).
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5See “Simple Harmonic Motion” (MISN-0-25).
6See “Translational and Rotational Motion of a Rigid Body” (MISN-0-43).
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Some Symbols Used

A, an arbitrary fixed point

B, an arbitrary fixed point

d~s, a differential displacement

Ek, kinetic energy

∆Ek, change in kinetic energy

Ep, potential energy

Ep,grav, gravitational potential energy

∆Ep, change in potential energy

~Fc, conservative force

~Fnc, non-conservative force

~F , force

~f , frictional force

g, acceleration of gravity

h, height

m, mass

~r, radius

r̂, unit vector in the radial direction (away from origin)

WA→B , work done by a force moving from A to B

Wnc,on, the work done on a system by non-conservative forces

x̂, a unit vector in the x-direction
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PROBLEM SUPPLEMENT

Use: g = 9.8m/s2

Use Conservation of Energy in each problem marked with an asterisk (*).

If no Reference Point is given, use the standard one for that type of
problem.

-Problems 20-22 are also in this module’s Model Exam.

1. In the example of Sect. 5b in the text, we found that 175 J of energy
was converted to heat and breaking of chemical bonds, primarily in
your toe. If it requires an average of 10−18 J to break one molecular
bond and 4/7 of the “lost” energy went into breaking molecular bonds,
how many bonds were broken?* Answer: 3

2. The useful output power from a certain water pump is 80.0% of the
electrical power supplied to it. This pump is used to raise 4.0 kg/s
of water from a well. If the water leaves the system at a speed of
8.0m/s at a height of 12.0m above the water level in the well, find the
electrical power being supplied to the pump.* Answer: 7 Help: [S-24]

3. The high-dive at an Olympic swimming pool is 10.0m (32.8 ft) above
water level. Neglecting air resistance, with what speed will a diver
hit the water if he or she starts with a speed of 5.0m/s at an angle of
36.87◦ above the horizontal?* Answer: 1 Help: [S-25]

4. A girl of mass 49.0 kg is on a swing which has a mass of 1.0 kg. Suppose
you pull her back until her center of mass is 2.0m above the ground.
You let her go and she swings out and returns to the same point. Are
all forces acting on the system conservative? (Caution: this question
deserves a carefully qualified answer.) Answer: 2

5. Assume that all forces in the previous problem are conservative, and
that the center of mass of the girl-plus-swing system is 0.75m off the
ground at its lowest point. Find the girl’s maximum speed.* Answer:
8

6. Suppose you push the girl in problem 5 and add 490 J of energy to the
system. Find her new maximum height above the ground.* Answer:
4

13

MISN-0-21 PS-2

7. A certain toboggan with its riders has a mass of 305 kg and goes down
a hill which is 25m high. The toboggan starts from rest and attains
a final speed at the bottom of the hill of 12m/s. Find the energy lost
to friction.* Answer: 10

8. One bit of advice that bowlers often hear is “let the weight of the ball
do the work. Don’t force it.” For each of the following two cases,
find the percentage of the ball’s final energy which is supplied by the
bowler:* Help: [S-26]

a. Good bowler, average = 200, backswing height = 1.10m, release
speed = 6.76m/s. Answer: 5

b. Average bowler, average = 120, backswing height = 0.70m,
release speed = 7.70m/s. Answer: 5 (Data from Murose,
“Biomechanics of Bowling,” Nelson, ed., Biomechanics IV, 1974.

9. A rubber ball is dropped from a height of 1.5m onto a concrete floor
and rebounds to a height of 1.2m. What fraction of its original energy
was lost to friction?* Answer: 11

10. Given a conservative force defined by ~F = −kx2x̂ find the correspond-
ing potential energy function. State the reference point. Answer: 6

11. Given a conservative force, ~F = k/r3r̂, find the associated potential
energy function. State the reference point. Answer: 9

12. Given the conservative force ~F = xy0x̂ find the associated potential
energy function. State the reference point. Answer: 13

13. Given the conservative force, ~F = A cosx x̂, find the potential energy
function. State the reference point. Answer: 14

14. A man at the scene of an accident claims that he was traveling on a
level road at 25m/s (56mph) when he saw the car pull out in front
of him. He says he skidded for about 30m and hit the other car
with a speed of about 5m/s. If he is telling the truth, what was
the coefficient of friction, assuming it to be independent of speed?
Answer: 3 Help: [S-12]

15. A car with a mass of 1500 kg accelerates from rest to a speed of 21m/s
in a time of 8.0 s. Neglecting losses due to friction and assuming a
level road, what horsepower is required? ( hp = 746W) Answer: 15

16. Re-do the previous problem for the car on a hilly road if its increase
in height is 8m.* Answer: 17

14
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17. A 40.0 kg mass is traveling horizontally with velocity 2.0 x̂m/s as it

crosses the coordinate origin and encounters the force ~F = −kxx̂ due
to a spring. If k = 250N/m, at what value of x will the mass stop?*
Answer: 3 Help: [S-18]

18. A system consists of particles A and B with masses 11 kg and 21 kg
respectively. At time zero: A has a velocity of (5.0m/s, east) at
height h = 0.0. B has a velocity of (4.0m/s at 23◦ north of east) and
h = 2.0m. One hour later: A is at rest at h = 3.0m. B has a velocity
of (8.0m/s, north) at h = 0.0. Find the net work done on the system
during the hour.* Answer: 16 Help: [S-29]

19. How many times could a 72 kg person climb the Empire State Building
while using up 2.0×103 food calories of energy, if her or his body were
100% efficient in turning food energy into useful mechanical energy?
The Empire State Building is 381m high, and a food calorie = 4186 J.
Answer: 19 (It should be clear from the answer to this problem that
very little of the body’s energy is converted into useful mechanical
energy. Most of it goes into heat.)

20. A nonconstant force, F , directed vertically upward (the force varies
in magnitude as some unknown function of altitude) is exerted on an
object of mass m. Under the action of this force, the object moves
straight up from ground level to a distance h, above the ground. It
starts at rest and when it gets to height h it is moving with speed v
upward.

a. Draw the free-body diagram of forces that act on this mass during
the course of its motion upward. Label the unknown force vector
with a symbol but point it in the proper direction. Answer: 35

b. Write down the Work-Force integral for this system, expressing the
work of each of the forces separately. Answer: 22

c. Evaluate the integrals that can be evaluated. Answer: 28

d. Draw the appropriate picture(s) for solving this problem using con-
servation of energy. Answer: 20

e. Write the conservation of energy relation for this object. Answer:
32

f. How much work was done by the force F? Answer: 34

21. A nail partially driven into a board, is driven in further by dropping
a mass onto it. The mass, m, is released a distance y0 above the head

15
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of the nail and drives the nail an additional distance s into the board.
Neglect the mass of the nail.

a. Defining the zero of potential at the top of the nail, find the po-
tential energy of the mass m at the instant m is released. Assume
the nail’s mass is negligible. Answer: 23

b. What is the kinetic energy at that instant? Answer: 33

c. Find the potential energy after the mass has driven the nail the
additional distance s into the board. Answer: 29

d. What is the kinetic energy at that instant? Answer: 21

e. Write the conservation of energy relation for this problem. Answer:
25

f. How much work is done on the mass m by the nail-plus-board-
plus-earth mechanically resistive system? Answer: 30

g. How much work is done on the nail-plus-board-plus-earth mechani-
cally resistive system by the mass-plus-earth gravitational system?
Answer: 31

h. Assuming that the nail exerts a constant force on the mass during
the interval that the nail is slowing the mass to a stop, determine
the magnitude of this force, FN .* Answer: 24

22.

H

An artillery shell fired from a gun at ground level leaves the
muzzle of the gun with a speed of 5.0 × 101m/s. The shell strikes a
direct hit at a site on the top of a hill which is at an altitude of 45m
above ground level.

a. Assuming no friction, use energy conservation to find the speed
with which the shell hits at the site. Answer: 27

b. If the shell strikes the ground at the site with a speed of 38m/s,
what percentage of its original energy was lost (to friction with the
air) by the shell in its flight? Answer: 26

16
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Brief Answers:

1. 14.9m/s

2. Possibly yes, if there is no friction. But in the more likely real case,
there will be friction, which is a non-conservative force. Thus if she
does indeed return to the same point, there must have been a non-
conservative force acting on the system, e.g., the girl “pumping.”

3. 1020. Ouch!

4. 3.0m

5. a) 53%; b) 77%

6. kx3/3; x = 0

7. 7.5× 102W

8. 5.0m/s

9. k/(2r2); x =∞

10. 53 kJ

11. 1/5

12. 1.0

13. −x2y0/2; x = 0

14. −A sinx; x = 0

15. 55 hp

16. 2.8× 102 J

17. 75 hp

18. 0.80m

19. 31 times

17
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20.

h

time 0: time t:

F(0)

F(h)

21. Zero

22.
∫ h

ground
~F · d~r +

∫ h

ground
(−mg)ds =

1

2
mv2

23. mgy0

24. mg
(

1 +
y0

s

)

25. mgy0 = −mgs+ energy dissipated in heat and ruptured bonds

26. ≈ 7% (6% or 7%)

27. 4.0× 101m/s

28. Second integral is −mgh

29. −mgs

30. −mg(y0 + s)

31. mg(y0 + s)

32.
∫ h

ground
~F · d~r =

1

2
mv2 +mgh.

Note that Ek(ground) = 0 and Ep(ground) = 0.

33. Zero

34.
1

2
mv2 +mgh

18
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35. See diagram:

F
`

mg
`
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-2f)

Write the general definition for the work W done by force F in moving
from A to B.
* STOP* & WRITE THE ANSWER BEFORE PROCEEDING!
Help: [S-7]

S-2 (from TX-2b)

Let Wnc ≡
∫ B

A
~Fnc · d~s ≡ the work done by a non-conservative force.

You will then have different values for Wnc depending on the actual
path taken between points A and B. For example, consider moving a
50 kg box from point A to point B on a level floor, if B is 4m north and
3m east of A. Assume the coefficient of friction between the box and
the floor is µ = 0.40. If you apply a horizontal force ~F , find the work
which you do in moving the box from A to B.
This problem has as many different answers as there are paths between
A and B. The shortest path is the straight line from A and B of length
5m. The only horizontal forces are F and f , i.e., the applied force and
friction. If we assume the initial and final velocities are zero, the average
acceleration must be zero. It follows from Newton’s second law that the
average resultant force must be zero, so ~F = −~f = µN ŝ. The only
vertical forces are N up and mg down, so again from Newton’s second
law, N = mg. Thus ~F = µmgŝ. Then we have

W =

∫ B

A

µmg ŝ · d~s = µmg

∫ B

A

ds = µmgS,

where S is the total distance traveled between A and B. Clearly S could
be any number ≥ 5m depending on the path; e.g., for the shortest path,
W = (0.4)(50)(9.8)5 = 980 J. But if you traveled 4m north and then
3m east, S = 7m, and W = 1372 J.

S-5 (from Help: [S-15])

f = F = 200N when F = µmg cos θ. Here θ is the angle the nor-
mal to the incline makes with the vertical. It is also the angle the
incline makes with the horizontal. Now cos θ = (L2 − h2/L)1/2. So
µ = FL/

(

mg(L2h2)1/2
)

= 1/(8)1/2 = 0.35.
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S-7 (from Help: [S-1])

W ≡

∫ B

A

~F · d~s

If you did not put down exactly this result, review MISN-0-20.

S-14 (from TX-4)

m = 60.0 kg, v0 = 0, g = 9.8m/s
2, h = 1.0m, v =?

From kinematics (See “Kinematics in One Dimension,” MISN-0-7): v2−

v2
0 = 2as, so in the y-direction, for this problem, v

2 = 2gh. So v =
(2gh)1/2 = 4.4m/s.

S-15 (from TX-4)

h = 1.0m; m = 60.0 kg
L = 3.0m;
v = 0
F = ?

∆Ek = 0. ∆Ep = 0−mgh.

L

F

F

h

Wnc = −FL, where the negative sign comes from the fact that the
force F is in the opposite direction to the displacement. Alternatively,
one could say that the negative sign comes from the fact that the work
done by the non-conservative force is work done on the environment
(including the block) by the block’s surface.
Thus from Text Eq. (3) we have: −FL = 0 − mgh, from which F =
mgh/L = 2.0× 102N.
Most of this force will probably be supplied by friction. Indeed, if the
coefficient of friction is greater than 0.35 you will need to push the box
if you want it to go down the incline! Help: [S-5]
Note that the work done by F is −600 J and the work done by gravity is
+600 J, so the total work done on the box is zero, which equals ∆Ek.
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S-16 (from TX-4)

Here are various correct equations:

Ek(t) + ∆Ek = Ek(t+∆t),

Ep(t) + ∆Ep = Ep(t+∆t),

Ek(t) + Ep(t) + ∆Ek +∆Ep = Ek(t+∆t) + Ep(t+∆t),

∆Ek +∆Ep =Wnc,on.

Here ∆Ek is the net change in the system’s kinetic energy over the time
interval ∆t, ∆Ep is the net change in the system’s potential energy over
that same time interval, and Wnc,on is the work done on the system by
non-conservative forces during that same interval.

S-22 (from TX-3b)

Consider the particles A and B. Here are some of their properties (the
F ’s are different forces):

Property Time A B
kinetic energy 0 7.0 J 0.0 J
kinetic energy t 2.0 J 4.0 J
potential energy due to F1 0 3.0 J 0.0 J
potential energy due to F1 t 1.0 J 11.0 J
potential energy due to F2 0 0.0 J 5.0 J
potential energy due to F2 t 0.0 J 8.0 J

Problem: find the work W done on the system.
We find: (7 + 0 + 3 + 0 + 0 + 5) J +W = (2 + 4 + 1 + 11 + 0 + 8) J.
W = 11 J.
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S-23 (from TX-4)

Let us further develop the analogy following Text Eq. (5). Kinetic en-
ergy is like cash. Potential energy is like a checking account — one for
each conservative force acting in the problem. Moving money from one
checking account to another or to cash does not change your total as-
sets. But you must not include money taken from a checking account as
“money acquired” during time ∆t. Similarly, the total energy in a free
falling ball is constant; energy is being taken out of the gravitational
potential energy checking account and turned into kinetic energy (cash)
but the total assets are constant. Looked at from this point of view, the
work done by gravity while the ball falls is not energy entering the sys-
tem (not money acquired) since it was already there as potential energy
(i.e., in the checking account) at the beginning of the time interval.

S-24 (from PS-prob. 2)

Write conservation of energy between points A and B: at point A, water
is at rest at the bottom of the well; at point B, it is at height h and
moving with speed v. Recall that power is energy (here, work) per unit
time.

S-25 (from PS-prob. 3)

At t = 0, the diver has potential and kinetic energy. Note that the result
is independent of θ.

S-26 (from PS-prob. 8)

The unknown is Wm/Ekf where Wm is the work done by the man and
Ekf is the final kinetic energy.

S-27 (from PS-prob. 14)

Recall that the frictional force is the coefficient of friction times the
normal force.

S-28 (from PS-prob. 17)

Use conservation of energy to show that x = v0(m/k)
1/2.

S-29 (from PS-prob. 18)

See [S-22] for a similar problem.
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S-30 (from TX-3b)

We changed to primed symbols for the variables of integration because
we wanted to use unprimed symbols for the upper limit of integration
and hence for the function on the left side of the equation (our real
goal).
The term “dummy variable of integration” is standard usage. It indi-
cates that the symbol used for the variable of integration is immaterial
in a definite integral because it does not appear in the final answer.
Thus

∫ 1

0

x dx and

∫ 1

0

y dy

give exactly the same answer.
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MODEL EXAM

1. See Output Skill K1 in this module’s ID Sheet.

2. A nonconstant force, F , directed vertically upward (the force varies
in magnitude as some unknown function of altitude) is exerted on an
object of mass m. Under the action of this force, the object moves
straight up from ground level to a distance h, above the ground. It
starts at rest and when it gets to height h it is moving with speed v
upward.

a. Draw the free-body diagram of forces that act on this mass during
the course of its motion upward.

b. Write down the Work-Energy relation (in its original form without
potential energies) for this system, expressing the work of each of
the forces separately.

c. Evaluate the integrals that can be evaluated.

d. Draw the appropriate picture(s) for solving this problem using con-
servation of energy.

e. Write the conservation of energy relation for this object.

f. How much work was done by the force F in lifting the mass to the
height h?

3. A nail partially driven into a board, is driven in further by dropping
a mass onto it. The mass, m, is released a distance y0 above the head
of the nail and drives the nail an additional distance s into the board.
Neglect the mass of the nail.

a. Defining the zero of potential at the top of the nail, find the potential
energy of the system (take the mass m as the system) at the instant
m is released.

b. What is the kinetic energy at that instant?

c. Find the potential energy after the mass has driven the nail the
additional distance s into the board.

d. What is the kinetic energy at that instant?

e. Write the conservation of energy relation for this problem.

f. How much work is done on the mass by the nail?
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g. How much work is done on the nail by the mass?

h. Assuming that the nail exerts a constant force on the mass during
the interval that the nail is slowing the mass to a stop, determine
the magnitude of this force, FN .

4.

H

An artillery shell fired from a gun at ground level leaves the
muzzle of the gun with a speed of 50m/s. The shell strikes a direct
hit at a site on the top of a hill which is at an altitude of 45m above
ground level.

a. Assuming no friction, use energy conservation to find the speed with
which the shell hits at the site.

b. If the shell strikes the ground at the site with a speed of 38 me-
ters per second, what percentage of its original energy was lost (to
friction) by the shell in its flight?

Brief Answers:

1. See this module’s text.

2. See Problem 20 in this module’s Problem Supplement.

3. See Problem 21 in this module’s Problem Supplement.

4. See Problem 22 in this module’s Problem Supplement.
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