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MASS CHANGING WITH TIME:
THE VERTICAL ROCKET, ETC.

by
Peter Signell

1. Introduction

Ordinary locomotion on earth relies heavily on friction - the interac-
tion of a vehicle, be it bicycle, car, ship, or aircraft, with its environment.
For a rocket outside the earth’s atmosphere there is neither earth nor air
nor water to push against; the rocket must achieve its acceleration another
way. It is via fuel mass expulsion that such propulsion is achieved and
controlled. Here we investigate the propulsion of the vertical rocket; that
is, of a rocket propelled vertically upward against a uniform gravitational
field. The commonplace use of rockets for launching communications
satellites and for interplanetary explorations makes this subject one of
considerable technological interest.

The vertical rocket is a special case of the more general class of prob-
lems involving systems of variable mass, due here to the expulsion of
fuel. The solution of other variable mass problems proceeds in exactly
the same manner as for the vertical rocket, except that the external force
exerted on the system is not always that of gravity. One example is that
of a jet aircraft, where the external drag force comes mainly from air
resistance.

2. The Gravity-Free Rocket Equation

2a. Rocket Momentum Balances Exhaust Momentum. We will
deal first with a rocket in outer space where gravitational forces are weak
and can be neglected. How can we explain the ability of this rocket to
accelerate? Our rocket can be considered to consist of two parts; the fuel
and the shell-payload. Expansion of the fuel during burning results in its
continuous expulsion rearward in the’form of burned-out exhaust gases.
Since there is no external force on the total system, the system’s momen-
tum is conserved.! This implies that any rearward momentum acquired
by the fuel as exhaust must be balanced by a newly-acquired momentum
of the rocket in the forward direction. Furthermore, the center-of-mass

1See “Momentum: Conservation and Transfer” (MISN-0-15).
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of the entire system is left undisturbed as the exhaust gases and rocket
move away from it in opposite directions.

Another way of describing the rocket’s acceleration is in terms of
Newton’s third law.? The rearward acceleration of the exhaust implies a
rearward force on it by the rocket but this in turn implies the existence of
an equal but opposite forward force-exerted on the rocket by the exhaust
gases.

2b. Thrust as a Function of Exhaust Velocity, Burn Rate.
We can use conservation of momentum for the gravity-free (¢ = 0) rocket
to derive its acceleration as a function of its design parameters. This
derivation is easiest to make if we imagine ourselves as moving along
parallel to the rocket with a constant velocity which coincides with the
rocket’s at a specified instant; then during the succeeding time increment,
we observe the momentum changes in the various parts of the system.
In Figure la we see the rocket with mass mR at the instant when it is
apparently at rest because we are moving along with it.

In Figure 1b we see it at a time dt later when it has expelled a mass
of exhaust gas dmp rearward with velocity v relative to the rocket. The
fuel burn rate R connects dmpg to the time increment dt:

We now use conservation of momentum for our isolated system to deter-
mine the increment of velocity, di'g, acquired by the rocket:3

0 = dp'= dpr + dprp = mpdig + Ugdmg, (2)

2See “Particle Dynamics-The Laws of Motion” (MISN-0-14).
3The momentum form of Newton’s Second Law, F = d(mwv)/dt, can be used for
rocket problems only with great care. We advise against it.
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where we have (properly) neglected a product of infinitesimals. There are
several connections we can make between the quantities in Eq. (2):

dmp = —dmpg
’17E = 'UE@E = —UEﬁR; (3)
d’UR = dva)R .
Combining Egs. (1), (2), and (3), we find the rocket’s acceleration:
’UER

= 4
aR mR’ ()

and hence the force on it produced by the exhaust gases:
FR = UER . (5)

This force is called the rocket engine’s thrust and its linear dependence
on vy and R checks with what one would expect intuitively. Although
we have derived Egs. (4) and (5) for the case of an observer moving at a
certain constant velocity, the same force and acceleration values will be
found by a stationary observer.* Thus Eqgs. (4) and (5) are quite general.

2c. Velocity as a Function of Rocket Parameters. The equation
relating a rocket’s velocity to its fuel expenditure is particularly simple
and obviously has practical application. To derive it we integrate the
differential form of Eq. (4),

VE

d’UR = ——dmR,
mpg
to obtain the change in velocity:
Avg = vg fn <mRi> . (6)
U

Here mp; is the initial rocket mass (at ignition) and mpy is its final mass
(at burn-out).

Assuming that the initial rocket mass consists of fuel mass mp and
shell-payload mass mg, and that the final rocket mass consists only of the
shell-payload, we obtain the velocity change in terms of the fuel expendi-
ture:

Avp =vg In (1—}—@) . (7)
ms
All parts of this equation check with what one would expect intuitively.

4This is because accelerations add vectorially and the acceleration of one constant-
velocity observer with respect to another (of differing velocity) is zero. For further
details see “Relative Linear Motion, Frames of Reference” (MISN-0-11).

MISN-0-19 4

2d. Velocity as a Function of Time. Equation (6), for the change
in velocity as a function of mass, can be written as an implicit function
of time: (&)
mp(ti
vr(t) =vr(t;) + ve En(m;ﬂt))’ t; <t <ty, (8)
where t; is the ignition time and t is any succeeding time up to the shut-
down time ty. The time dependence can be made explicitly if we specify
mp(t). For example, a constant burn rate

R = —dmpg/dt = positive constant (9)

will produce (upon integration) a linear decrease of the rocket mass with
time:

mR(t) = mR(ti) - (t - ti)R; ti S t S tf,
where ty is easily found from:

AmR

At = ——; where At =t; —t;, etc.

We then obtain the gravity-free rocket equation:

-1
R(w%ﬂ b <t <ty. (10)

vr(t) = vgr(t;) + ve In [1 T

This is plotted, for a particular set of rocket parameters, as a solid line in

Fig. 2.

3. Modifications for Gravity

When a rocket rises vertically from the surface of the earth, against
gravity, the additional force adds to the thrust and thus Eq. (4) becomes:

(11)

Integrating and assuming vg(t;) = 0, t; = 0, we obtain a revised
Eq. (7):

UER _

aR =
mp

vr(ty) =vE In (14—@) —gty. (12)
mg
Finally, Eq. (10) becomes:
— gt 0<t<ty. (13)

1
Rt
1 —

vr(t) =vg In

MmRpg;
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Figure 2. Rocket velocity as a function of time for gravity-
free space (solid line) and for a rocket rising in a constant
gravitational field (dashed line).

Note that if the burn rate is high, so that ¢; is small, the gravity term
in Egs. (12) and (13) will be small. That is typically the case. Equation
(13) is plotted as a dashed line in Figure 2.
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PROBLEM SUPPLEMENT

Note: Problems 12-13 are also on this module’s Model Exzam.

1. A vertical rocket weighs 13 tons, of which 9.75 tons is fuel. Assume a

constant fuel ejection velocity of 2mi/s and assume that the effect of
gravity is so small that it can be neglected. What is the speed of the
rocket when the fuel has been exhausted?

. A rocket whose weight is 3000 tons, when fueled up on the rocket pad,

is fired vertically upward. At burnout 2780 tons remains. Gases are
exhausted at a velocity of 165,000 ft/s relative to the rocket; both
quantities are constant while the fuel is burning.

a. What is the thrust?

b. What is the speed of the rocket at burnout?

. If the rocket in Problem 2 is fired in deep space (no external forces),

what is its speed at burnout?

. The 13 ton rocket in Problem 1 is remade as a 2-stage rocket. The

first stage weighs 12 tons, of which 9tons is fuel. The second stage
weighs the remaining 1 ton, of which 0.75 ton is fuel. The second stage
is fired after the fuel has been exhausted in the first stage and it has
been decoupled. Again neglecting effects due to gravity, find the final
velocity of the second stage. Note that you must apply the rocket
equation twice, in succession. Compare to the final velocity of the
one-stage rocket.

. A boy with a pea shooter is standing on roller skates on a horizontal

frictionless surface. The mass of the system (boy, skates, pea shooter,
and peas) at a particular instant is M. At the same instant the boy
is shooting peas of mass mp each whose velocity relative to the earth
is v, and the velocity of the peas with respect to the boy is v,. All
of these velocities are colinear. The number of peas per unit time is
N. What is the average thrust on the boy due to the ejected peas at
that instant?

. Does a simple scaling-up of the fuel mass and rocket shell mass provide

greater thrust? Greater velocity?

10
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7. Given an exhaust velocity of Vgg = 10,860 mph and a fuel/fuel-

container-plus-engine ratio of 90amount o fuel necessary to raise a Brief Answers:
payload of 10001b to the velocity necessary to escape earth’s gravity
(Vis = 25,000 mph). 1. 2.77mi/s ~ 9,970 mph = mach 13.4
Mrp
Note: r= ——— =0.9 _ 81 — 5
ote: Mrc + Mg 2. a. F=4.67x10°1b = 2.34 x 10° tons
where Mpc is the mass of the fuel container and Mg is the mass of b. v =7,610ft/s = 5,190 mph = mach 7.0

the engine. My is the mass of the fuel.
3. v=12,6001t/s = 8,590 mph = mach 11.6
8. Show that each of the three quantities on the right hand side of Eq. (4)
occurs in a reasonable position. 4. v=vg 13 =5.13 Hll/S = 18,500 mph = mach 25; 85% greater.

9. Show that the right hand side of Eq. (7) agrees with what one would 5. F'= Nv,.m,

expect as Mg — 0 or mg — 0.
P 6. Yes; no.

10. Show that the right hand side of Eq. (6) agrees with what one would

—v v — — _1_
expect if mpr = mp;. 7. mp =m, [(1— e ves/vex )=l —p=1]7" = 14 x 10°1b.

11. Use the small-z approximations (1 +z)~! ~ (1Fz) and ¢n(l+z) ~ 12. 10,860 mph

+x on Eq. (13) to show that the rocket’s initial acceleration is: 13. vr(t;) = va(t;): check!
’UER

a= —
MR;

Show that this agrees with what one would expect from Newton’s
second law and the thrust equation applied at time zero.

12. The earth escape velocity, 25,000 mph, is the upward velocity needed
at the surface of the earth for eventual escape from the earth’s grav-
itational pull. If the maximum fraction of a rocket’s mass that can
be devoted to fuel is 90%, determine the minimum exhaust velocity
necessary for the rocket to reach escape velocity.

13. Show that the equation developed in Problem 1 above agrees with
what one would expect if ¢ is set equal to the initial time, .

11 12
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MODEL EXAM

1. See Output Skills K1-K3 on this module’s ID Sheet.

2. The earth escape velocity, 25,000 mph, is the upward velocity needed
at the surface of the earth for eventual escape from the earth’s grav-
itational pull. If the maximum fraction of a rocket’s mass that can
be devoted to fuel is 90%, determine the minimum exhaust velocity
necessary for the rocket to reach escape velocity.

3. Show that the equation developed in Problem | above agrees with what
one would expect if ¢ is set equal to the initial time, ¢.

Brief Answers:

1. See this module’s text.
2. See this module’s Problem Supplement, Problem 12.

3. See this module’s Problem Supplement, Problem 13.
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