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ACCELERATION AND FORCE

IN CIRCULAR MOTION

by

Peter Signell

1. Introduction

Here are some questions of the types we can answer from a study
of acceleration and force in uniform circular motion: Why are highway
curves banked, and what characteristics of vehicles and terrain determine
the design angle? What happens if a car or truck does not match the
vehicle characteristics that were assumed by the highway department in
designing a particular curve? Why do drivers of mopeds, bicycles, and
motorcycles lean while going around a corner? How much should they
lean? What happens if they don’t?

In the film, 2001: A Space Odyssey, the space station rotates so as
to simulate the force of gravity as we know it at the earth’s surface (see
Fig. 4). The space station is in the shape of two large wheels connected
by an axle. How does it simulate the gravitational force and at what rate
must it turn? Is it necessary to vary the rate according to the weight of
each space-person?

Suppose you tie a rock on the end of a long string and then whirl it
around your head. What governs the angle of the string?

Airplane pilots talk about “g” forces. What are they, and why are
they important to pilots? How are they measured and what are their
(obviously important) physiological effects?

2. Acceleration and Force

2a. The Circle of Motion. When an object is traveling along a
circular arc, we talk about its “circle of motion,” whether the object is
traveling completely around a circle or only around part of a circle. If the
motion is circular only on an arc, we mentally extend the arc to make a
complete circle, and that is the “circle of motion.”

2b. Uniform Circular Motion. For any object in uniform circular
motion, its acceleration is radially inward, pointing precisely toward the
center of the circle of motion, as in the example in Fig. 1. The magnitude
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Figure 1. A car traverses a quarter-circle turn, traveling
at constant speed so its acceleration ~a is purely radial. The
car’s speed is such that the road exerts only a normal force
on the car. The turn is banked at angle θ, which is also
the angle by which the road force is off the vertical. The
resultant (net, total) force on the car is labeled ~Fr.

of the object’s acceleration is a = v2/r, where v is the object’s speed and
r is its distance from the center of the circle of motion.1 If you are given
that an object has many forces on it, and that it is in uniform circular
motion, then you know that the object’s acceleration is toward the center
of the circle. By Newton’s second law, this means the resultant force on
the object must also be toward the center of the circle of motion. This is
illustrated in Fig. 1.

2c. Example 1: A Car on a Turn. Our first example of uniform
circular motion is a car that is traveling at constant speed around a high-
way curve (see Fig. 1). Geometrically, the curve is a circular arc which we
can mentally extend to make a complete imaginary circle. While the car
is on the curve, it is maintaining a constant radius from the center of that
imaginary circle. If we were to draw the car’s path on an aerial photo,
using a drafting compass, one leg of the compass would be at the center
of that circle and the other on the car’s path (see Fig. 1). Because the
car is traveling at constant speed, the acceleration ~a is exactly toward the
center of the circle of motion (see Fig. 1). Since ~Fr = m~a, the resultant
force on the car must also be toward the center of the circle of motion (see
Fig. 1). We have drawn the force of the road on the car as being normal
to the road: this will be the case if the car is traveling at just the right

1See “Kinematics: Circular Motion” (MISN-0-9).
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Figure 2. A string-restrained rock is whirled about the
person’s body axis at a constant speed. The force of the
string on the rock is off the vertical by the angle θ.

speed (more on this later).

¤ A 2000 lb car is traveling at 50mph around the curve illustrated in
Fig. 1, with r = 390 ft. Show that the acceleration of the car, traveling at
a constant 50mph, is a = 0.43 g. That is, the acceleration is 43% of the
usual acceleration of gravity for objects in free fall. Help: [S-7]

2d. Example 2: Rock on a String. Our second example is the case
of a rock being whirled around the body at the end of a string as in Fig. 2.
The string will only produce a force along its physical direction, as shown
in the figure. We assume the rock is being made to travel at constant
speed so its acceleration is a = v2/r and is exactly toward the center of

the circle of motion. By ~Fr = m~a, the resultant force on the rock must
also be toward the center of the circle of motion (see Fig. 2).

2e. Example 3: A Bicyclist Rounding a Corner. Our third ex-
ample is the case of a bicyclist tilting sideways while rounding a corner,
as in Fig. 3. We could equally well have used a person rounding a corner
while doing any of such diverse things as running, riding a moped or a
motorcycle, or skiing. The point is that the person does not want what-
ever is supporting the body to exert a sideways force, one which would
tend to throw the person off the support sideways. Thus in Fig. 3 we have
assumed the person tilts to an angle such that the support force on the
body has no sideways component. We also assume the forward speed is
constant so the acceleration is exactly toward the center of the circle of
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Figure 3. A bicyclist tilts sideways rounding a corner. The
force of the bicycle on the bicyclist is off the vertical by the
angle θ.

motion. Then, by ~Fr = m~a, the resultant force on the person must also
be exactly toward the center of the circle of motion (see Fig. 3).

3. The Proper Highway Banking Angle

3a. A Sideways Force is Undesirable. If the roadway on a highway
is properly banked, as in Fig. 1, the roadway will exert no sideways force
on the car as long as the car maintains the proper speed. This is highly
desirable since a sideways force can cause the car to start to accelerate
(slide) sideways. This will happen if the sideways force exceeds the max-
imum sustainable force of non-sliding friction. Of course the maximum
sustainable non-sliding frictional force depends drastically on the condi-
tion of the tires and the surface of the road. The maximum sustainable
frictional force can be close to zero in a snowstorm or ice storm, or even
in a sudden deluge from a summer rainstorm.

3b. Deducing the Angle. Our condition for the proper banking angle
of a highway turn is that the road should only exert a normal force on
the car, as in Fig. 1. Our problem is to deduce that proper banking angle,
indicated by the symbol θ in Fig. 1. Data available for the calculation
include the radius of the turn and the mass and speed of the vehicle.

Here are the five steps:

8
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1. Combine the radius and speed to get the magnitude of the car’s
acceleration. The direction of the acceleration is known so now we
know ~a.

2. Use ~Fr = m~a to get ~Fr.

3. Require that ~Fr be the result of adding the known gravity force to a
normal road force, as shown in the one-body diagram in Fig. 1. The
magnitude of the road force is made a symbol since, at this point,
it is unknown.

4. Write the force equation in terms of horizontal and vertical compo-
nents. This gives two equations in two unknowns (the magnitude of
the road force and the value of θ used to break the road force into
components).

5. Solve for one or both of the unknowns, as desired.

3c. The Deduced Angle. The result of carrying out the steps out-
lined above gives for the proper banking angle:

θ = tan−1

(

v2

rg

)

, (1)

where v is the speed of the vehicle, r is the radius of the turn, and g is
the acceleration of gravity in free fall (9.8m/s2). Incidentally, the normal
force N of the road on the car is:

N =
mg

cos θ
=
weight

cos θ
. (2)

¤ Carry out the five steps listed above and deduce Eqs. (1) and (2).
Help: [S-8]

¤ For the example at the end of Sect. 2c, show that the proper banking
angle is 23◦. Help: [S-12]

3d. Analysis of the Results. First, note that the ideal banking angle,
θ, is independent of the vehicle’s mass! Therefore the same banking angle
can serve all vehicles provided they move with the design speed:

v =
√

rg tan θ; Help: [S-9]

For somewhat larger or smaller speeds, the frictional force between tires
and road will keep the vehicle on the curve if tire tread and road surface
permit.
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¤ Suppose the road has become icy during a blinding snowstorm and
you head into a short-radius curve, steeply banked for 55mph, at 25mph
(as I once did). What do you think will happen? Draw the one-body
diagram!

4. Other Examples

4a. Whirling Rock on a String. For the whirling rock example of
Sect. 2, we follow the procedure used in Sec. 3 and deduce the angle of the
string. The result is:

θ = tan−1

(

v2

rg

)

, (3)

where v is the speed of the rock, r is the radius of the circle, and g is the
acceleration of gravity.

¤ Follow the referenced steps and deduce Eq. (3). Help: [S-10]

4b. Bicyclist on a Turn. To deduce the angle of lean, in the turning
bicyclist of Sect. 2, we follow the procedure used above and in Sec. 3 to
find:

θ = tan−1

(

v2

rg

)

, (4)

where v is the speed of the bike (and rider), r is the radius of the turn-
circle, and g is as usual.

¤ Follow the referenced steps and deduce Eq. (4). Help: [S-11]

4c. “Weight” on a Banked Turn. When a vehicle travels a banked
turn, the driver’s weight seems to increase. That is, the driver has the
same feeling that would be experienced if the force of gravity were sud-
denly increased. Similarly, the vehicle’s tires flatten more against the
pavement, as though the car was also experiencing increased gravity. The
driver’s physical sensations are an increase of the force of the car seat
on the driver’s posterior and similar sensations in the driver’s internal
organs. This apparent increase in weight, due to the increased normal
force, is given by Eq. (2).

¤ In the example at the end of Sect. 2c, show that the effect is as though
the force of gravity had increased by about 9% while traversing the turn.

4d. Circular Motion and Weightlessness. A pilot in a plane can
produce a temporary feeling of “weightlessness” by aiming the plane
slightly upward and then making a tight turn downward. The plane thus

10
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moves in a circular arc in a vertical plane. At the peak of the plane’s path,
where it is instantaneously parallel to the earth’s surface, the resultant
force is in the same direction as the force of gravity. If, at that point,
the speed and radius are such that a = v2/(r) = g, then the resultant
force exactly equals the force of gravity. Of course the resultant force on
the pilot is the sum of the (downward) force of gravity and the (upward)
force of the plane’s seat on the pilot’s posterior. In our present case the
resultant force equals the force of gravity alone, so the force of the seat
on the pilot must be zero and this is what accounts for the feeling of
“weightlessness.”

4e. Acceleration in g’s. People who routinely engage in tight turns,
such as fighter pilots, measure the accelerations they experience in g’s,
sometimes spelled “gees,” which simply means they divide the accelera-
tion in ordinary units by the quantity g, expressed in the same units. For
example, consider the “weightless” turn described above. If the pilot con-
tinued in the same circle at the same speed, the point at the bottom of the
circle would be a “one gee” turn. Help: [S-13] At this instant the pilot’s
weight would seem to have doubled. Similarly, a two gee turn causes an
apparent tripling of body weight. At four to five gees, insufficient blood
reaches the brain and the sitting pilot “blacks out.”2

5. Force-Words for Circular Motion

5a. Centripetal Force. The radial acceleration acting in uniform
circular motion, a = v2/r, is frequently referred to as the “centripetal”
acceleration. The resultant force that produces this acceleration is called
the “centripetal” force, but note that this (resultant) force is almost al-
ways the sum of forces produced by various agents.

5b. Centrifugal Force. Newton’s third law says that for every force
there is an “equal but opposite” force, and the force “equal but opposite”
to the centripetal force is called the “centrifugal” force. In the example of
the airplane pilot at the bottom of a vertical circular turn, the (upward)
centripetal force is the force of the seat on the pilot. The centrifugal force
is the force of the pilot on the seat. Similarly, for a person in a horizontal
centrifuge-type ride in an amusement park, the centripetal force is the
radially inward force of the seat on the person, producing the observed

2Pilots can sustain up to 10 gees by staying there no more than seconds before
returning to 2-3 gees for a short recovery period, and up to 15 gees in a reclining
(rather than sitting) position.
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Figure 4. Cross-sectional sketch of a possible space station.
Rotation causes simulation of gravity for each person along
the outer rim.

acceleration, while the centrifugal force is the equal but opposite force of
the person on the outside edge of the seat (if the seat is not strong enough
to withstand the centrifugal force, there will be an accident).

In the case of a bicyclist making a sharp turn, the resultant force is
exerted on the bicycle and rider by the road surface as a force of non-
sliding friction. The centrifugal force is exerted by the bicycle on the
ground surface. If the bicycle hits a loose pebble or a slippery spot, the
coefficient of friction may suddenly drop to zero with disastrous results.

In a common classroom demonstration a student sits on a rotating
lab stool, holding a weight in an outstretched arm. The student’s hand
exerts the centripetal force on the weight, producing its acceleration. The
weight exerts the reactive centrifugal force on the student’s hand, and of
course this is what the student feels.

5c. The Rotating Space Station. Gravity can be simulated in a
space station by causing it to rotate at the right speed. Consider the ro-
tating space station shown in Fig. 4. The two persons shown in the sketch
are upside-down with respect to each other, yet each exerts a centrifugal
force on the floor underfoot. If the speed of rotation v is related to g and
the radius r by a = v2/r = g, and if each person stands on a scale, the
centrifugal force each exerts on the local scale will be exactly equal to the
person’s own weight.

12
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5d. Coriolis Force. Curving motion produces yet another force that
can sometimes be important. Called the “Coriolis” force, it arises when
one observes trajectories from a rotating frame of reference (usually the
surface of the earth).3 This is the force that causes the plane of the Fou-
cault pendulum4 to appear to rotate, both demonstrating the rotation
of the earth and indicating the latitude of the pendulum. The Coriolis
force also causes the regularity in the direction of rotation of the common
extratropical cyclones seen on weather satellite photographs, and it is in-
volved in the prevailing directions of the major winds and ocean currents.
It can be demonstrated on a rotating lab stool.
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Glossary

• banking angle: the angle at which the roadbed of a highway curve
is tipped from the horizontal.

• centrifugal force: the reactive force to the centripetal force, to which
it is equal but opposite.

• centripetal acceleration: the radially-inwardly component of accel-
eration for an object in circular motion.

• centripetal force: the radially-inward component of the resultant
force on an object in circular motion.

• ideal banking angle: the banking angle such that, for an object at
a particular speed undergoing circular motion, there is no “sideways”
force on the object. For a highway turn, this means that the road
surface exerts only a normal (perpendicular) force on vehicles traveling
at the design speed. The resultant of the (normal) road force and the
force of gravity is the centripetal force that causes the vehicle’s velocity

3See “Classical Mechanics in Rotating Frames of Reference: Effects on the Surface
of the Earth” (MISN-0-18).

4This is the pendulum commonly seen in science museums, usually several stories
tall, consisting of a long wire and a steel ball.
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vector to constantly change direction as the vehicle travels through the
turn.
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PROBLEM SUPPLEMENT

1. The space station in 2001: A Space Odyssey is constructed in the shape
of two wheels connected by an axle (see Fig. 4 in this module’s Text
for a drawing of one of the wheels and part of the connecting axle). If
the “wheels” are each 300m in diameter, what rotational period would
be necessary in order to simulate the familiar force of gravity at the
earth’s surface?

2. As in Problem 1 but for the SKYLAB satellite: what rotational period
would be necessary for this satellite, which is about 16m in diameter?

3. A ball of mass m is attached to the end of a
string of length `; the other end is tied to the
ceiling. The ball is set into motion in a circular
path as shown.

a. Make a one-body diagram for the ball.

b. What must its speed be for the string to
make a given angle θ with the vertical?

c. Find the tension in the string.

q

m

l

4. You are rounding a turn of radius 0.500mile (2,640 ft) at 175mi/hr
(257 ft/s) in the Indy 500. In the following, neglect effects due to
rotation of the earth and air resistance.

a. Derive the ideal track banking angle in symbols, then in degrees.
Sketch a clear one-body force diagram showing all forces, plus the
resultant, that act on the car.

b. Explain why this banking angle is ideal.

c. Calculate the force of the car on you, in multiples of your body
weight.

The Indy 500 track was actually built in 1909 and banked for 100mi/hr
(147 ft/s).

d. Calculate its actual banking angle. Sketch a clear one-body force
diagram showing the resultant force for this case (100mi/hr).

15
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e. Sketch a clear one-body force diagram showing the force needed
to keep your 175mi/hr car at constant radius, as well as the part
of that force supplied by the horizontal component of the actual
track’s support. Also show the sideways force parallel to the track
which must be supplied by static and skidding friction between tires
and track. This is the difference between the above two forces.

f. Identify the centripetal and centrifugal forces associated with your
body, in the sense of stating what body is acting and what body is
acted on in each case.

5. A ball of mass m rolls on the inside of the
frictionless circular cone of height h and
base of radius R. The axis of the cone is
vertical, and the apex points down. That
ball is set into motion in a horizontal circu-
lar path of radius r. (0 < r < R)

a. Draw a one-body diagram for the ball.

b. What is the required speed v of the ball?

R

h

r

Brief Answers:

1. T = 2π
√

r/g = π
√

2d/g = 25 s; d = diameter

2. T = π
√

2d/g = 5.7 s

3. a. T

mg

b. v =
√

` g sin2 θ/ cos θ Help: [S-1]

c. T = mg sec θ Help: [S-2]

16
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4. a. tan θ = v2/(Rg)

θ = 38.02◦.

b. Track must not
exert a sideways
force parallel to
itself. Then there
will be no ten-
dency for a car to
skid sideways.

c. 1.27 times
your weight.
Help: [S-14]

horizontal

q

N1 (track support)

Resultant 1

(for 175 mi hr )-1

1 “g” (gravity)

d. θ0 = 14.35
◦.

horizontal

q

N2(track support)

Resultant 2

(for 100 mi hr )-1

1 “g” (gravity)

e.
Force needed for

175 mi hr turn

(Resultant 1)

-1

Extra horizontal force which

must be supplied by friction

Horizontal force supplied

by actual track support

(Resultant 2)
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f. car door (or shoulder belt) on you, you on car door (or shoulder
belt)

5. a. The force diagram looks similar to that of problem 3a but with the
force T replaced by a force normal (perpendicular) to the frictionless
surface.

b.
√

rgh/R Help: [S-4]

18
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS-Problem 3b)

1. Determine the actual acceleration the mass undergoes, in terms of
given and desired quantities. Get rid of r by substituting ` sin θ.

2. Multiply the acceleration by the mass to get the force acting on the
mass.

3. Draw the force on the diagram in the problem statement.

4. Did you properly point the force toward the center of the circle?

5. Write the total force on the mass as ~T , the string’s (unknown) force,
plus m~g: these are the only forces acting on the mass.

6. Set the force deduced from the acceleration equal to the force deduced
from adding the acting forces. This produces a vector equation.

7. Rewrite the vector equation as two single-component equations (one
for the x-components, one for the y-components), each involving θ.

8. Eliminate T between the two equations, leaving one equation.

9. Solve for v2.

S-2 (from PS-Problem 3c)

sec θ ≡ 1/ cos θ

S-4 (from PS-Problem 5b)

1. Completely solve problem 4 before attempting this one.

2. The surface of the cone is said to be “frictionless,” so the cone surface
only exerts a force normal to itself. That’s the physics. Now using
trigonometry, we find that the force of the surface on the ball is at
an angle of tan−1 [R/h] from the horizontal.

19
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S-7 (from TX-2c)

[(50mi/hr)(5280 ft/mi)(1/3600 s/hr)]
2

(390 ft)(32 ft/s2)
= 0.43

S-8 (from TX-3c)

Taking components as stated:

N sin θ = Fr =
mv2

r
N cos θ = mg

S-9 (from TX-3d)

Solve Eq. (1) for v.

S-10 (from TX-4a)

The equations are exactly the same as in [S-8] but with N replaced by
T , the tension in the string.

S-11 (from TX-4b)

The equations are exactly the same as in [S-8].

S-12 (from TX-3c)

tan−1 θ = tan−1

(

v2

rg

)

= tan−1 0.43 = 23◦

Help: [S-7]

S-13 (from TX-4e)

The acceleration of the pilot, at that point, is 1 g (32 ft/s2) upward.
This is obviously a “1 gee” acceleration.

S-14 (from PS-Problem 4c)

~Fon you = ~Fearth on you + ~Fcar on you = myou ~ayou

What is your acceleration?
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MODEL EXAM

1. See Exam Skills K1-K2, this module’s ID Sheet. The exam may include
one or more of these skills, or none.

2. You are rounding a turn of radius 0.500mile (2,640 ft) at 175mi/hr
(257 ft/s) in the Indy 500. In the following, neglect effects due to
rotation of the earth and air resistance.

a. Derive the ideal track banking angle in symbols, then in degrees.
Sketch a clear one-body force diagram showing all forces, plus the
resultant, that act on the car.

b. Explain why this banking angle is ideal.

c. Calculate the force of the car on you, in multiples of your body
weight.

The Indy 500 track was actually built in 1909 and banked for
100mi/hr (147 ft/s).

d. Calculate its actual banking angle. Sketch a clear one-body force
diagram showing the resultant force for this case (100mi/hr).

e. Sketch a clear one-body force diagram showing the force needed
to keep your 175mi/hr car at constant radius, as well as the part
of that force supplied by the horizontal component of the actual
track’s support. Also show the sideways force parallel to the track
which must be supplied by static and skidding friction between tires
and track. This is the difference between the above two forces.

f. Identify the centripetal and centrifugal forces associated with your
body, in the sense of stating what body is acting and what body is
acted on in each case.

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, Problem 4.
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