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1. Vocabulary: invariance, observer, relative linear motion, velocity
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2. Given an object’s motion relative to one observer, and that ob-
server’s motion relative to a second observer, describe the object’s
motion relative to the second observer (MISN-0-11).

Output Skills (Knowledge):
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with respect to all observers shows that the Galilean transforma-
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K4. Given the Lorentz transformation, derive the relativistic velocity
addition law from it.
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SPECIAL RELATIVITY:

THE LORENTZ TRANSFORMATION,

THE VELOCITY ADDITION LAW

by

P. Signell, J. Borysowicz, and M.Brandl

1. The Galilean Transformation

1a. Applicable Situations. The Galilean transformation applies to
the physics of “everyday” life, where objects move at “normal” speeds. It
follows from the “ordinary” velocity addition law.

1b. Velocity Addition Law. Consider an object O with (one-
dimensional) velocity vOA(t) as determined by (“relative to”) observer
A and velocity vOB(t), relative to observer B. The ordinary velocity ad-
dition law states that:

vOB(t) = vOA(t)− vBA , (1)

where vBA is the velocity of observer B relative to observer A.1 Velocity
vBA is restricted to being independent of time for the purposes of this
unit.

1c. Transformation Derivation. In order to obtain the Galilean
transformation, we must get x’s into the equation. This is easy since

vOB(tB) ≡ dxOB(tB)/dtB ,

and
vOA(tA) ≡ dxOA(tA)/dtA , (2)

where tA is the time as measured on A’s clock, while tB is the time as
measured on B’s clock. Then vOB(tB) is the velocity of O as seen by B
at the time tB.

1In one-dimensional problems all vectors can be arranged to point along a single
axis. Then in vector equations the same unit vector is common to all terms so it can be
factored out and dropped. That leaves the vector components along that single axis,
for which the axis subscript can also be dropped. These quantities, such as vOB, vOA,
and vBA in Eq. (1) are not vector magnitudes, which would always be positive; instead
they are vector components which can have negative as well as positive numerical
values.
The double subscript notation is developed in more detail in “Relative Linear Mo-

tion, Frames of Reference” (MISN-0-11).
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In words, Eq. (2) shows that the velocity of O as observed by A is
the time rate of change of the position of the object, as observed by A
with A’s measuring devices (clocks and rulers). Substituting Eq. (2) into
Eq. (1), and integrating with respect to tA:

∫ t

t0

dxOB(tB)

dtB
dtA =

∫ t

t0

dxOA(tA)

dtA
dtA −

∫ t

t0

vBAdtA ,

where the left-hand-side (LHS) is not integrable until we put in the
Galilean time transformation, tB = tA. This is meant to be obvious, in
the sense that “everyone knows” that A’s clocks can all be synchronized
with B’s. For convenience, we replace tB and tA by the single symbol t.
Integrating, we get

xOB(t)− xOB(t0) = xOA(t)− xOA(t0)− vBA(t− t0) .

Again in the interest of simplicity we set t0 = 0 and set up A’s and B’s
x-axis origins at such places that they coincide at time zero. Then the
two observers’ measured positions of the object will agree at that time
and so:

xOB(t) = xOA(t)− vBAt . (3)

This equation, along with tB = tA ≡ t is the Galilean transformation.

1d. Invariance Under Label Interchange. To show that Eq. (3) is
invariant under interchange of observer labels, simply replace A by B and
B by A everywhere in the equation and show that by a little manipulation
you can get Eq. (3) back again. One intuitively feels that the laws of
nature should be independent of which label one gives to which observer.

1e. Predicted Light Speed Varies. The velocity addition law as-
sociated with the Galilean transformation is, of course, the same one we
started with: vOB = vOA − vBA. We now apply this addition law to the
case where the object O is the front end of a beam of light (L). Hence
vOB = vLB is the velocity of light measured by observer B, vOA = vLA

is the velocity measured by observer A and the two velocities are related
by:

vLB = vLA − vBA .

Notice that, if A and B are moving relative to each other (vBA 6= 0), then
each sees a different speed of light. This is, of course, the “common sense”
result.
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2. The Lorentz Transformation

2a. Observed Constancy of Light Speed. Toward the end of the
nineteenth century, this aspect of the Galilean transformation—the non-
constancy of the speed of light—came into conflict with Maxwell’s formu-
lation of the theory of electricity and magnetism and with the experimen-
tal tests of that formulation. The theoretical and experimental results
pointed toward one conclusion - that the velocity of light must be the
same for all observers, regardless of their motion relative to each other,
that is, vLB = vLA = c, a constant.

The Galilean transformation cannot give this result; the one that
does is the Lorentz transformation.

2b. The Transformation. The Lorentz transformation is given by:

xOB = k (xOA − vBAtA) , (4)

tB = k
(

tA − vBAxOA/c2
)

, (5)

k ≡
(

1− v2

BA/c2
)

−1/2
. (6)

The Lorentz transformation has the peculiar features that the length of
an object such as a meter stick is contracted and the rate of a clock is
slowed when observed from a moving reference frame.2

Note, that, in the limit that vBA << c, the Lorentz transformation
reduces to the Galilean transformation.

3. The Velocity Addition Law

3a. Derivation. The relativistic velocity addition law can be easily
derived from the Lorentz transformation. First,

vOB =
dxOB

dtB
=

dxOB

dtA
·
dtA
dtB

=
dxOB

dtA
·

(

dtB
dtA

)

−1

. (7)

Differentiating Eq. (4) with respect to tOA gives:

dxOB

dtA
= k

(

dxOA

dtA
− vBA

dtA
dtA

)

= k(vOA − vBA) .

2See “The Length Contraction and Time Dilation Effects of Special Relativity”
(MISN-0-13). This unit culminates in an examination of the “twin paradox”: The
Lorentz transformation predicts that, if twin A is moving, A will age more slowly than
will stationary twin B. However, twin A could equally well say that it is twin B who
is moving, albeit in the opposite direction (vBA = −vAB), and therefore it is B who
should age more slowly.
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And differentiating Eq. (5) with respect to tA gives:

dtB
dtA

= k

(

dtA
dtA

− vBA

dxOA

dtA
/c2

)

= k(1− vBAvOA/c2) .

So substituting these into Eq. (7) gives:

vOB = k(vOA − vBA)
[

k(1− vBAvOA/c2)
]

−1
,

so:

vOB =
vOA − vBA

1− vBAvOA/c2
, (8)

which is the relativistic velocity addition law.

3b. Velocity Much Less Than the Speed of Light. Note that
here, too, in the limit that vBA << c, our result reduces to the “ordinary”
velocity addition law.

3c. Predicting Constant Light Speed. We can verify that the speed
of light is the same for all observers. If we put vOA = vLA = c into Eq. (8)
then

vLB =
c− vBA

1− vBAc/c2
=

c− vBA

1− vBA/c
= c .

So, both A and B see light as having the same speed.

3d. Reduction to Galilean Law. We have pointed out that, in the
limit that vBA is much less than the speed of light, the relativistic velocity
addition law reduces to the ordinary velocity addition law. This can be
demonstrated by putting “everyday” speeds into the velocity addition
laws and comparing the results.

3e. A Numerical Example.

A. B. O.

Consider, for instance, the following situation. Observer A sees object
O moving in the −x-direction, toward him/her, at a speed of 1000m/s
(2237mi/hr), and A also sees observer B moving in the +x-direction, away
from her/him, at 1000m/s. According to the ordinary velocity addition
law, observer B will therefore see object O as having velocity:

vOB = vOA − vBA = (−1000m/s)− 1000m/s = −2000m/s .
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That is, O is seen by B as approaching him/her at 2000m/s. Using the
relativistic velocity addition law, B sees O as having velocity

vOB =
vOA − vBA

1− vBAvOA/c2

=
(−1000m/s)− 1000m/s

1− (1000m/s)(−1000m/s)/(3× 108 m/s)2

=
−2000m/s

1 +
106 m2/s2

9× 1016 m2/s2

'
−2000m/s

1 + 1.1× 10−11

=
−2000m/s

1.000000000011
= −1999.9999978m/s .

The difference between the two results is of the order of one part in a
billion. So, for this case, the difference between the results of the ordinary
velocity addition law and the relativistic velocity addition law are too
small to be measurable in the everyday world.

¤ A spaceship is approaching the earth at a speed of 0.9000 c. A cyclotron
mounted on the spaceship sends out a beam of protons with speed 0.9000 c
relative to the spaceship. Show that an observer on the earth sees the
beam of protons approaching her or him with a speed of 0.9945 c.
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Glossary

• Galilean transformation: the transformation between frames of
reference that applies when the relative linear velocity of one reference
frame with respect to the other is much less than the speed of light.

• Lorentz transformation: the transformation between frames of ref-
erence that applies when the relative linear velocity of one reference
frame with respect to the other has any value whatsoever.
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• relativistic velocity addition law: a statement of the way in which
velocities transform from one constant-speed frame of reference to an-
other.
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MODEL EXAM

1. See Output Skills K1-K6 in this module’s ID Sheet. The actual exam
may contain any number of these skills.

Brief Answers:

1. See this module’s text.
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