
Project PHYSNET Physics Bldg. Michigan State University East Lansing, MI· · ·

MISN-0-11

RELATIVE LINEAR MOTION,

FRAMES OF REFERENCE

current

thrust

path

1

RELATIVE LINEAR MOTION, FRAMES OF REFERENCE

by

Peter Signell and William Lane

1. Applications of Relative Motion
a. Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
b. Solar System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Double Subscript Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
a. Relative Position Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
b. The Order of the Subscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
c. Velocity and Acceleration from Relative Position . . . . . . . . .2
d. Subscript Reversal on ~v and ~a . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
e. An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. Frames of Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
a. “Observer” Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
b. Checking an Equation’s Subscript Sequence . . . . . . . . . . . . . 4
c. Converting From Other Notations . . . . . . . . . . . . . . . . . . . . . . . 4

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2



ID Sheet: MISN-0-11

Title: Relative Linear Motion, Frames of Reference

Author: Peter Signell and William C. Lane, Department of Physics

Version: 2/11/2002 Evaluation: Stage 1

Length: 1 hr; 20 pages

Input Skills:

1. Add and subtract vectors using their Cartesian components
(MISN-0-2).

2. Given a vector described either in terms of Cartesian components
or magnitude and direction, determine the other vector description
(MISN-0-2).

3. Given an object’s position as a function of time, find its velocity
and acceleration as functions of time (MISN-0-8).

4. Detect errors in symbolic equations by checking dimensions
(MISN-0-8).

Output Skills (Knowledge):

K1. Vocabulary: frame of reference, observer.

Output Skills (Problem Solving):

S1. Given the position vectors of both an object and an observer as
seen by a second observer, find the position, velocity and accel-
eration vectors of the object as seen by the first observer. Use
suitable notation for labelling observers and observed. Sketch any
of the vectors with respect to any frame of reference, as requested.
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RELATIVE LINEAR MOTION,

FRAMES OF REFERENCE

by

Peter Signell and William Lane

1. Applications of Relative Motion

1a. Navigation. An application of relative motion which immediately
comes to mind is that of navigation through currents of water and air.
Consider two observers and an object, where each observer sees both the
other observer and the object as moving. Given the equation of motion
of the object as seen by one observer, what equation of motion will the
other observer see for it? Here the equation of motion set by the pilot,
with respect to the fluid through which he moves, must be such as to
produce the correct equation of motion with respect to the land. Can
you tell which are the two “observers” and which is the “object?” Can
you transform the desired land-based equation into the fluid-based one
needed for navigation?

1b. Solar System Dynamics. For another application, consider the
apparent motions of the planets across the night sky. Since very ancient
times, the positions of the planets at various times had been carefully
recorded. In about 140 A.D., from this vast set of numbers, the plane-
tary equations of motion were finally deduced by Ptolemy. These equa-
tions were so excruciatingly complicated, however, that the forces which
would produce them must have seemed incomprehensible. Then in 1543,
in what must have been one of the most thrilling discoveries in history,
Copernicus transformed the equations of motion to the way they would be
observed from the sun and thereupon found them to be trivially simple.
This eventually spurred Newton to discover the elegantly simple univer-
sal laws of motion and of gravitation, and to invent calculus. From that
day to this, a fundamental assumption of physicists has been that all of
the forces of nature will be found to be elegantly simple when properly
expressed.

2. Double Subscript Notation

2a. Relative Position Vectors. Double subscript notation is a simple
and consistent method of dealing with the relative positions of two objects.
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Figure 1. Vector interpretation of double
subscript notation.

If ~rA is the position vector of object A and ~rB is the position vector of
object B in a given coordinate system, then the position vector of B
relative to A is defined by

~rBA = ~rB − ~rA . (1)

Notice that ~rBA is the vector which, when added to ~rA, gives ~rB :

~rA + ~rBA = ~rB . (2)

That is, if you start at the position of object A, and move along ~rBA, you
end up at the position of object B (see Fig. 1).

2b. The Order of the Subscripts. The order of the subscripts of a
relative position vector determines the direction of the vector. The vector
~rBA is directed from object A to object B. The vector ~rAB , from B to
A, would obviously point in the opposite direction, and have exactly the
same length as ~rBA, so

~rAB = −~rBA . (3)

2c. Velocity and Acceleration from Relative Position. Once the
relative position has been determined, it is simple to get the velocity and
acceleration of B relative to A, just by differentiating Eq. (1):

~vBA =
d

dt
(~rBA) =

d

dt
(~rB − ~rA) =

d

dt
~rB −

d

dt
~rA = ~vB − ~vA

~aBA =
d

dt
~vBA =

d

dt
(~vB − ~vA) =

d

dt
~vB −

d

dt
~vA = ~aB − ~aA ,

so
~vBA = ~vB − ~vA , (4)

~aBA = ~aB − ~aA . (5)

Notice that the mathematical relationships between ~vBA, ~vA, and ~vB , and
between ~aBA, ~aA, and ~aB are identical to those between ~rBA, ~rA, ~rB . For
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example, if you start out having velocity ~vA (or acceleration ~aA), give
yourself the additional velocity ~vBA (or acceleration ~aBA), you end up
having velocity ~vB (or acceleration ~aB).

2d. Subscript Reversal on ~v and ~a. It is also easy to see that the
velocity of A relative to B, ~vAB , and the acceleration of A relative to B,
~aAB , are related to ~vBA and ~aBA in just the same way as ~rAB is related
to ~rBA:

~vAB = −~vBA , (6)

~aAB = −~aBA . (7)

2e. An Example. As an example of the velocity addition law, Eq. (4),
suppose you are driving down a highway at 45mph when a state trooper
approaches you from the rear at 65mph. If the trooper has a radar gun
trained on you, what will it read? Using Eq. (4), we find the answer to
be 20mph. Help: [S-3] Perhaps the answer was obvious to you without
using Eq. (4).

Now suppose the trooper is traveling along a road that makes an
angle with the road on which you are traveling. What will the radar
gun read then? Perhaps it is obvious that Eq. (4) is needed in order to
determine the result in this case. Help: [S-4]

3. Frames of Reference

3a. “Observer” Labels. Sometimes it may be easier to deal solely
with relative quantities like ~rAB instead of “absolute” ones like ~rA. To

r
`

BA r
`

BA

r
`

BO r
`

BO

r
`

AO r
`

AO

A AB

O O

B

(a) (b)

Figure 2. Relative position vectors defined for various ob-
server labels where ~rBA is (a) the difference between two
vectors, or (b) the sum of two vectors.
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do this, we can simply place an observer O at the origin of the coordinate
system and measure all the vector quantities relative to that observer.
The coordinate system is called the observer’s “frame of reference.” Thus
~rA becomes ~rAO, ~vA becomes ~vAO, and so on (see Fig. 2a). Equation (1)
then becomes

~rBA = ~rBO − ~rAO , (8)

or, by applying Eq. (3) to get ~rAO = −~rOA (see Fig. 2b), we have:

~rBA = ~rOA + ~rBO . (9)

3b. Checking an Equation’s Subscript Sequence. The addition
equation, Eq. (9), may be read “A to B equals A to O plus O to B.” Note
that one reads the subscripts from right to left. This provides a powerful
check on the correctness of relative-vector equations, since it is usually
quite easy to rearrange terms into the addition form.

3c. Converting From Other Notations. Many scientists use a
“prime-unprimed” notation when describing vectors relative to two frames
of reference. Vectors in that notation may be converted to double sub-
script notation by placing observers (say, O and O′) at the origins of the
reference frames and expressing the vector quantities relative to these ob-
servers. For example, consider the “prime-unprimed” velocity addition
equation

~v = ~v′ + ~u , (10)

where ~v is the velocity of an object in the unprimed reference frame, ~v′

is the velocity of the object in the primed reference frame, and ~u is the
velocity of the primed frame relative to unprimed frame. Equation (10)
can be rewritten as

~vAO = ~vAO′ + ~vO′O , (11)

by making the identifications

~v = ~vAO = velocity of A relative to O

~v′ = ~vAO′ = velocity of A relative to O′

~u = ~vO′O = velocity of O′ relative to O .

The double subscript form is easy to check visually.
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Glossary

• frame of reference: a spatial coordinate system that is used to
determine the position or describe the motion of some object of interest.

• observer: a person making measurements, descriptions, or determi-
nations of some event.

9

MISN-0-11 PS-1

PROBLEM SUPPLEMENT

Problems 6 and 7 also occur in this module’s Model Exam.

1. Two cars on a straight section of road are traveling parallel to each
other. Car 1 has a speed of 60.0mi/hr and is traveling eastward, while
Car 2 has a speed of 45mi/hr. Calculate the relative velocity of Car 2
with respect to Car 1 when:

a. the two cars are traveling the same direction;

b. the two cars are traveling in opposite directions.

2. A speed boat capable of traveling 35m/s in still water attempts to
cross a river 1500m wide with a current moving at a speed of 28m/s.
Determine the direction the boat must travel relative to the current
if the resultant path of the boat is to be straight across the river,
perpendicular to the banks. How long will the trip take?

3. A particle Q has a position, measured with respect to coordinate sys-
tem O, of:

~r = (6t2 − 4t)x̂ − 3t3ŷ + 3ẑ .

With respect to another coordinate system O’, this same particle’s
position is:

~r = (6t2 + 3t)x̂ − 3t3 ŷ + 3ẑ .

(Note: all distances are in meters, all times are in seconds.)

a. Rewrite the two position vector equations with double subscripts
and proper units.

b. Find the time at which the two observers’ coordinate axes coincide.

c. Find the velocity of O′ with respect to O. Help: [S-5]

d. Find the distance between O and O′ at time t = 3 s.

e. Find the distance between Q and O at time t = 3 s.

f. Find the distance between Q and O′ at time t = 3 s.

g. Find the angle between ~rQO and ~rQO′ at t = 3 s.

h. Find the angle between ~rQO and ~rQO′ , as seen looking along the
z-axis, at t = 3 s.
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i. Draw a rough sketch showing ~rQO, ~rQO′ , and ~rOO′ , as they appear
if you are looking along the z-axis toward the origin. Label the
positions of Q, O, and O′.

4. An air traffic controller is tracking, via radar, two planes cruising at the
same altitude. At a particular time Plane A is 12miles away, bearing
60◦ (measured clockwise from north) and is traveling due north at
250mi/hr. Plane B is 10miles out, bearing 37◦ and is traveling due
east at 550mi/hr.

a. Draw a sketch of the position and velocity vectors of each plane
with respect to the controller’s position.

b. Express the position vector of each plane, and the position of plane
B relative to plane A, as functions of time.

c. Will the two planes collide if each plane holds its course? If so, how
long after the time of the above initial conditions will the collision
take place? Would you recommend this calculation be made by
hand calculator, slide rule, or computer?

d. What is the velocity of plane B relative to plane A?

5. In 1821 H.M. S.Clorinda, a British frigate, attempted to capture the
Estrella del Sur, a Spanish schooner. At a particular point of the chase
the schooner, well out of range, changed course to cross Clorinda’s
bow and head for San Juan, Puerto Rico on a NW course (N 45◦W)
at a speed of 8 knots. Clorinda, heading N11.25◦W at 6 knots, saw
the schooner 3 points off the starboard bow (i.e. at a bearing of 33.75◦

measured clockwise from dead ahead) at a range of 0.25 nautical miles.
Maximum cannon shot range was 2 cable lengths (0.20 nautical miles).

a. Sketch the situation at the time of the schooner’s course change.
Include the velocities of each ship and the position of the Estrella
del Sur relative to Clorinda.

b. Calculate the velocity of the schooner relative to the frigate.

c. Express the position of the schooner relative to the frigate as a
function of time.

d. Express the distance of the schooner relative to the frigate as a
function of time.

e. What is the distance of closest approach of the two ships? Will the
schooner ever be in range?
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Note: nautical mile = 1.0× 101 cable lengths
knot = nautical mile/hr.

6. You are a small-craft airplane pilot. You have pointed your plane due
west and maintained a speed of 120mi/hr as registered on your air-
speed indicator (speed with respect to the air) for two hours. However,
there is a wind blowing out of the north-east at 4.0× 101mi/hr. Cal-
culate the distance you are off your desired due-west course at the end
of the two hours.

7. Relative to the origin of a laboratory reference frame L, an object A’s
position varies with time according to

~rA = 5t
2x̂+ 8ŷ ,

while an observer O sees

~rA = 7t
2x̂ − 3t−1ẑ .

a. Rewrite the above vector equations, putting in double subscripts
and proper units. Assume that all distance quantities are in meters,
all time quantities in hours.

b. Find the speed (magnitude of the velocity) of O relative to L at
time t.

c. Find the magnitude of the acceleration of O relative to L at time t.

d. Draw a rough sketch of the position and velocity vectors of O, as
seen by L at t = 90min, as they would appear looking down the
z-axis toward the origin.

Brief Answers:

1. a. 15mi/hr, westward

b. 105mi/hr, westward

2. 143◦ from the direction of the current. The trip will take 71 seconds.

3. a. ~rQO =
[

(6m/s2)t2 − (4m/s)t
]

x̂+ (−3m/s3)t3ŷ + (3m)ẑ

~rQO′ =
[

(6m/s2)t2 + (3m/s)t
]

x+ (−3m/s3)t3ŷ + (3m)ẑ

b. t = 0

12
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c. ~vO′O = (−7m/s)x̂

d. rOO′ = 21m

e. rQO = 91.29m

f. rQO′ = 102.66m

g. 10.46◦ Help: [S-1]

h. 10.46◦ Help: [S-2]

i.

Q

y

x

O'O r '
`

OO

r '
`

QO

r
`
QO

j. In this problem, vO′O = −7m/s, so v is not zero at any time.

4. a.
,N

37°

30°
x̂

ŷ

,E

r
`

B

r
`

A

v
`

B

v
`

A

b. ~rA = (10.4mi)x̂+ [6mi + (250mi/hr)t] ŷ

~rB = [6mi + (550mi/hr)t] x̂+ (8mi)ŷ

~rBA = ~rB − ~rA = [(550mi/hr)t − 4.4mi] x̂+ [2mi− (250mi/hr)t] ŷ

c. The planes will collide in 29 seconds. A computer would be advis-
able.

d. ~vBA = 604mi/hr, bearing 114
◦.
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5. a.

y

x

N

E

N

N

11.25° 33.75°

v
`

1

45°v
`

2

r
`

21

1

2

frigate:

= 6 knots

schooner:

= 8 knots

= 0.25 mi

v

v

r

1

2

21

`

`

b. ~v21 = (−4.48 knots)x̂+ (−0.228 knots)ŷ

c. ~r21 = [0.096mi + (−4.48 knots)t] x̂+ [0.231mi + (−0.228 knots)t] ŷ

d. r21 =
(

[0.096mi + (−4.48 knots)t]
2
+ [0.231mi + (−0.228 knots)t]

2
)1/2

e. The minimum value of r21 is 0.226miles. This is greater than 0.2mi,
so the schooner will never be in range.

6. 56.6mi

7. a. ~rAL = (5m/hr
2)t2x̂+ (8m)ŷ

~rAO = (7m/hr
2)t2x̂+ (−3mhr)t−1ẑ

b. vOL =
(

16m2 hr−4t2 + 9m2 hr2t−4
)1/2

c. aOL =
(

16m2/hr4 + 36m2 hr2t−6
)1/2
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d. x, y in meters:

x

y

8

4

-4-8

v
`

OL r
`
OL

L
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS-problem 3g)

Write down the vector relation between ~rQO, ~rQO′ , and ~rO′O and draw
a vector addition diagram illustrating this relation. Now use either the
law of cosines or the properties of the dot product to find the angle
between ~rQO and ~rQO′ .

S-2 (from PS-problem 3h)

Looking along the z-axis, one does not see the z-component of a vector.
Then r2

QO = x2
QO + y2

QO, etc.

S-3 (from TX-2e)

This is a 1-dimensional problem so the vector notation can be dropped:

vBA = vB − vA .

You are being observed by the trooper, relative to the trooper, so the
equation reads:

vyou relative to trooper = vyou − vtrooper ,

and so:

vyou relative to trooper = 45mph− 65mph = −20mph .

S-4 (from TX-2e)

Write the equations in [S-3] as vector equations. Align one of the coordi-
nate axes along one of the roads and take components of the equations.
There will be sines and cosines in the component equations. After solv-
ing the equations, sketch the vectors approximately to scale and see if
your answer is approximately right.
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S-5 (from PS, problem 3c)

Apply the right equations from the text to get: ~rO′O = −~rQO′ + ~rQO.
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MODEL EXAM

Use double subscripts and proper units wherever possible.

1. See Output Skill K1, this module’s ID Sheet.

2. You are a small-craft airplane pilot. You have pointed your plane due
west and maintained a speed of 120mi/hr as registered on your air-
speed indicator (speed with respect to the air) for two hours. However,
there is a wind blowing out of the north-east at 40mi/hr. Calculate
the distance you are off your due-west course.

3. Relative to the origin of a laboratory reference frame L, an object A’s
position varies with time according to

r̂A = 5t
2x̂+ 8ŷ ,

while an observer O sees

r̂A = 7t
2x̂ − 3t−1ẑ .

a. Rewrite the above vector equations, putting in double subscripts
and proper units. Assume that distance is measured in meters and
time in hours.

b. Find the speed (magnitude of the velocity) of O relative to L at
time t.

c. Find the magnitude of the acceleration of O relative to L at time t.

d. Draw a rough sketch of the position and velocity vectors of O, as
seen by L at t = 90min, as they would appear looking down the
z-axis toward the origin.

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 6.

3. See this module’s Problem Supplement, problem 7.
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