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KINEMATICS IN ONE DIMENSION

by

Leon F.Graves

1. Introduction

1a. Kinematics. Kinematics is the study of the motion of particles in
terms of space and time. By a particle we mean an identifiable physical
object with spatial dimensions so small so that it can be located at a
point in a coordinate system.

1b. The Reason for One Dimension. The real world consists of
three space-dimensions but in this module we will be dealing only with
those motions that are one-dimensional, motions that are along a straight
line. This is because motion in a straight line is the simplest motion to
analyze so its study is a good introduction to motion in general. Further-
more, when motion does occur in more than one dimension, one often
solves for the Cartesian components of the vector quantities. The equa-
tions for these Cartesian components have much in common with their
one-dimensional counterparts that you will see in this module.

A major reason that it is easier to begin with one-dimensional motion
is that one does not have to have a multitude of vector symbols obscuring
the other concepts that are being introduced. To get rid of vectors, we
always choose a coordinate system in which the straight-line motion being
examined is along a coordinate axis. Then there is only one common unit
vector and it multiplies all terms in all vector equations, so it can be

h

t
t1 t2 t3

h3

h2

h1

Figure 1. Height of the bot-
tom of a flag, as a function of
time, as it is being raised and
then lowered to half mast.
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Figure 2. Illustration of displacement quantities (see text).

eliminated (“canceled”) from the equations. Although we will thus not
use vectors much in one dimension, we suggest that when interpreting
positive and negative values for quantities that have direction, you think
of those values as being multiplied by the appropriate unit vectors.

2. Position, Displacement

2a. Introduction. In straight line motion, position is defined as dis-
tance along the line of motion as measured from some chosen origin. For
example, when a flag is run up a flagpole, the position of the bottom of
the flag can be taken as its distance above the ground. This position can
be shown by a graph of height versus time (see Fig. 1). In this diagram
the bottom of the flag reaches height h1 at time t1 and h2 at t2; it is
then lowered, reaching h3 at t3, after which it remains at the half-mast
position. Since the selection of the coordinate system and its origin is
arbitrary, position may be negative or positive in value. The standard SI
unit of length is the meter, where 1meter equals 3.28 feet or 1.09 yards.

2b. Displacement is Change of Position. Position is a vector quan-
tity; for example, ~r = xx̂. Displacement, written ∆~r, is defined as change
in position. For example,

∆~r = ~rf − ~ro = (xf − xo) x̂ = x̂∆x , (1)

where the subscript f indicates final position and the subscript o indicates
starting or originating position for the time interval tf − to, and x̂ is a
unit vector in the positive x-direction (see Fig. 2).
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Figure 3. Illustration of quanti-
ties used to find average velocity
(see text).

3. Velocity

3a. Overview. Velocity is the time rate of change of position. When
we change position, we move. We may move slowly or rapidly. We may
move forward or backward. Mathematically, velocity is the rate at which
one’s position changes. Since the rate at which position changes can
itself be continually changing, velocity can be different at each instant of
time (think of a car speedometer that is continually changing). When
beginning to study physics, it is sometimes quite difficult to imagine a
quantity as being defined for an infinite continuum of instants during a
finite interval of time. In fact, Newton invented calculus just so he could
deal with the real world’s infinite continuum of instants. To make things
a little easier, we will first deal with a finite number of average quantities,
then graduate to the real thing.

3b. Average Velocity. If a particle is at position (xox̂) at time to and
at position (xf x̂) at a later time tf , the average velocity over the time
interval is (see Fig. 3):

~vav =
∆~r

∆t
=
(xf − xo) x̂

tf − to
= x̂

∆x

∆t
. (2)

3c. Instantaneous Velocity and Speed from x(t). The instanta-
neous velocity, called simply “the velocity,” is the limit of the average
velocity as the length of the time interval over which one is averaging
approaches zero; that is, as tf approaches to. Dropping the unit vectors
in Eq. (2) and taking the limit, we get:

v = lim
∆t→0

vav = lim
∆t→0

∆x

∆t
≡

dx

dt
. (3)
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Figure 4. The small triangles show how to measure ∆x and
∆t to determine instantaneous velocities ∆x/∆t at times t1,
t2, t3, t4.

The always-positive magnitude of v, written |v|, is the instantaneous
speed, or simply “the speed.” It is the quantity a car’s speedometer
is designed to display, in miles per hour and/or kilometers per hour. The
international standard (SI) unit of speed is meters per second.

3d. Instantaneous Velocity From Position Graph. If a graph
of position versus time is constructed from a data table, or drawn by a
recording instrument, the velocity at any time can be found graphically.
The slope of the tangent to the curve at any particular point is dx/dt at
that point and this is the instantaneous velocity at that time.

This tangent to the curve can be called the physical slope to distin-
guish it from a geometrical slope measured in degrees or radians. Unlike
a geometrical slope, a physical slope has units determined by the scale of
the graph, those of the ordinate divided by those of the abscissa. These
slopes can be determined by drawing tangents to the curve at points on
the curve, and subsequently using the tangents as the hypotenuses of right
triangles that can be drawn and measured (see Fig. 4).

3e. Units. The standard SI unit for speed and velocity is one meter per
second, which is approximately equal to 3.28 feet/second or 2.24mph—a
brisk walking speed. To run a four minute mile, a track star must average
22 ft/s or 15mph (the maximum speed posted for many school zones). In
SI units this is 6.70m/s. Tropical storms are called hurricanes as soon
as their winds reach 33 SI units, 33m/s, equivalent to 64 knots or 74mph.
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Figure 6. Getting vav.

The speed of sound is approximately 330 SI units, 330m/s.

3f. Example. The motion of a particle traveling along a straight line
can be described roughly by giving its position at a number of times. Here
is an example:

t( s) 0.10 0.20 0.30 0.40 0.50 0.60
x(m) 0.15 0.55 0.60 0.40 0.35 0.50

This information can also be shown by plotting a graph, as in Fig. 5. Since
we believe such a particle travels smoothly, we would normally connect
the points by a smooth line as indicated. In any case, if we collected more
and more data on the particle, we could plot more and more points until
the graph took on a smooth appearance as in Fig. 6.

Now suppose we need to find the average velocity over the interval
from t = 0.10 s to 0.20 s. We can use data table to find:

vav =
∆x

∆t
=
0.55m− 0.15m

0.20 s− 0.10 s

= 4.0m/s .

Or we can measure on our (carefully constructed) graph (Fig. 6) to dis-
cover that:

vav =
∆x

∆t
=
0.40m

0.10 s
= 4.0m/s .

This is the slope of the dashed line connecting the end points of the
interval in Fig. 6.
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Figure 7. Getting v(t).

On the other hand, if we want the instantaneous velocity at t = 0.10 s,
we let the ∆t in Fig. 6 shrink toward zero:

v(0.10 s) = lim
∆t→0

∆x

∆t

∣

∣

∣

∣

0.10 s

=
∆x

∆t

∣

∣

∣

∣

0.10 s

.

which is just the slope of the first dashed line in Fig. 7. That is, the
(instantaneous) velocity at any given time is the slope of the graph, the
time derivative of the function, at that time.

We can immediately see from Fig. 7 that v is positive throughout
the interval from t = 0.10 s to 0.20 s (for example), because x is always
increasing with t throughout this interval.

4. Acceleration

4a. Overview. The word “acceleration” implies a change in velocity.
Thus we must associate acceleration with change in velocity over some
interval of time; we must not associate it with any one particular instan-
taneous velocity. Both direction and magnitude of velocity change are
important. For example, a ball thrown upward into the air slows down,
momentarily stops, then picks up downward velocity, all because of the
constant downward acceleration due to gravity.

4b. Average Acceleration. If a particle has a velocity v0x̂ at time
t0, and a velocity vf x̂ at a later time tf , the average acceleration over
that time interval is:

~aav =
∆~v

∆t
=
(vf − vo) x̂

tf − t0
= x̂

∆v

∆t
. (4)

4c. Instantaneous Acceleration. The instantaneous acceleration,
called simply “the acceleration,” is the limit of the average acceleration

10
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Figure 8. The small triangles show how to determine in-
stantaneous acceleration ∆v/∆t at times t1, t2, t3, t4. This is
not the velocity corresponding to the displacement in Fig. 4.

as tf → t0. Dropping the unit vectors in Eq. (4) and going to the limit,

a = lim
∆t→0

∆v

∆t
≡

dv

dt
=

d2x

dt2
. (5)

This is “the acceleration of a particle at the time t0.” The acceleration is
in the direction of the x-axis and has the dimensions length/time2. When
its value is non-zero, its direction may be to the right (positive value) or
to the left (negative value).

4d. Instantaneous Acceleration From Velocity Graph. A curve
of velocity versus time, whether the velocities are obtained from graphs
or tables, can be quite useful. Not only does the slope give instantaneous
acceleration but, as we shall see later, the area between the velocity curve
and the time axis gives the displacement. The slope, dv/dt (which is also
a), can be determined by drawing tangents and triangles at desired times
(see Fig. 8). Here we drew the same shape for v(t) as we did for x(t) in
Fig. 4 so as to emphasize that acceleration relates to velocity in somewhat
the same manner as velocity relates to position.

4e. Instantaneous Acceleration From Position Graph. Since the
slope of the velocity curve, dv/dt, is the time rate of change of velocity,
it is d2x/dt2 which is called the “bending function” of the position/time
curve. It is instructive to draw separate position, velocity and acceleration
curves, one above the other, using a common time scale (see Fig. 9).
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Geometrically, a(t) is the rate of change of the slope of x(t); it is
the rate at which that function “bends.” For instance, in Fig. 7 the slope
is positive at t = 0.10 s but negative at t = 0.30 s. In fact, the slope
decreases continuously from t = 0.10 s to t = 0.30 s as the curve continues
to bend negatively. Therefore the acceleration is negative throughout this
interval.

In general, the acceleration a is positive where the graph of x as a
function of t bends upward (positively), like an outstretched palm, as one
proceeds to the right. Of course a = 0 where the graph is a straight line;
a is negative when the curve is bending negatively downward.

Suppose, for example, we wish to examine the motion of a photopho-
bic bug that continually moves in order to stay in the (noonday) shadow
of a swinging pendulum. The bug’s motion, which is technically called
“simple harmonic motion” (students may question the word “simple”),
can be described by the equation:

x = A sinωt.

Here A is the farthest the bug gets from the center of its “back and forth”
travels and ω (“omega”) is 2π times the bug’s number of complete circuits
per unit time.

The velocity of the bug is the first derivative of position:1

v =
dx

dt
= ωA cosωt .

Its acceleration is the next derivative:

a =
dv

dt
=

d2x

dt2
= −ω2A sinωt .

This can be written:
a = −ω2x .

Figure 9 shows the bug’s position, velocity, and acceleration as functions
of time. You should check to see if each of the lower two curves is the
slope of the one above it, and that the third is the bending function
of the first. Figure 10 illustrates what happens when there is constant
position, velocity, and/or acceleration. This position curve is composed
of several distinct segments, as can be seen more easily in the velocity and
acceleration curves. Where the position curve is bending downward as

1See “Review of Mathematical Skills - Calculus: Differentiation and Integration”
(MISN-0-1).
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Figure 9. Plots of bug position, velocity and acceleration
on the same time scale (see text).

time increases, note that the velocity is decreasing and the acceleration is
negative. Where the position curve is bending upward as time increases,
note that the velocity is increasing and the acceleration is positive. The
acceleration is zero at the point of inflection, the point where the bending
changes from downward to upward and the acceleration from negative to
positive. The acceleration is also zero wherever a straight line segment of
the position curve shows that the velocity is constant.

Note the difference in appearance between the curves of Fig. 9 and the
three successive parabolas on the right hand side of the position curve in
Fig. 10.2 Although the displacement curves are rather similar, the graphs
of velocity and acceleration are not, as can be easily seen by evaluating
the derivatives. This illustrates the difficulty in accurately determining
position, velocity, and acceleration relationships from graphs.

2The dashed lines show where a quantity is undefined (ambiguous). Where the
velocity “is” a vertical line, the acceleration would be infinite. Such a situation cannot
occur in real life, so such an x(t) is said to be “unphysical.” Nevertheless, such x(t)
curves are often close enough to real-life curves so they can be used as approximations:
they are often easy to deal with mathematically.
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Figure 10. Concurrent plots of position, velocity and ac-
celeration when one or more remains constant with time.

4f. Higher Order Derivatives. Derivatives of position beyond the
second can be taken and in general they will be non-zero. For example,
the first derivative of acceleration, which is the third derivative of position,
is called the “jiggle” or “jerk,” and it is used in studying vibrations. In
general, one or more of the higher derivatives is of interest only when it
is directly related to some other quantity involved in the motion.

4g. Units. One of the most common accelerations is that due to gravity
near the surface of the earth. Generally called “g,” this is 9.8m/s2, or
32 ft/s2. One SI unit of acceleration, therefore, is about one tenth the
acceleration of gravity near the surface of the earth. When dropped from
rest near the surface of the earth, a particle undergoes an increase in
velocity of about 1m/s every tenth of a second. Half way to the moon
(a distance of 30 earth radii, or 2 × 107m), the acceleration of gravity
is about one SI unit, 1m/s2. A particle in that vicinity and in free fall
would find its velocity increasing toward the earth at the rate of 1m/s
every second.

4h. Example. A Problem: Given that a particle moves along the x-
axis with acceleration a(t) = A+Bt2, starting from rest at x = 5.0m at
t = 0. Find its position at all instants of time, x(t).

14
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Solution: Since a = dv/dt, write:1

v =

∫

dv =

∫

a dt =

∫

[A+Bt2] dt = A

∫

dt+B

∫

t2 dt

= At+
1

3
Bt3 + C ,

where C is a constant that can be determined from the given initial con-
dition that v = 0 when t = 0; v(0) = 0. To do so, we can set t = 0 in the
equation above to obtain:

0 = 0 + 0 + C ,

so
v(t) = At+Bt3/3 .

Next use v = dx/dt to obtain:

x =

∫

dx =

∫

v dt =

∫

[At+
1

3
Bt3] dt =

1

2
At2 +

1

12
Bt4 +D ,

and applying the initial conditions on x we get:

x(t) =
1

2
At2 +

1

12
Bt4 + 5.0m .

5. a(t) → v(t) → x(t) Using Integration

5a. Start With Acceleration. In dynamics it is common to analyze
the motion of an object by examining its acceleration. This is because
acceleration can often be deduced from known forces, but also because in-
struments that measure acceleration (“accelerometers”) are used on ships,
submarines, aircraft, and rockets for “inertial navigation.” Accelerome-
ters are used because they need not be in contact with the earth. As-
suming the acceleration has been obtained as a function of time during a
journey, either by instrument or from known forces, the velocity and po-
sition of the traveler can be obtained provided they are known for some
one time in the journey (for example, at the beginning point).

5b. Change in Velocity From Acceleration Graph. The area
between an acceleration curve and the time axis is the integral

∫

a(t) dt,
so this gives the change in velocity over the period of time being used.

15
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The sign of the area gives the sign of the acceleration, hence determines
the acceleration’s direction and this can be either positive or negative.
Therefore the total or net change in velocity over any period of time is
equal to the net area that is bounded by the beginning and ending times
(see Fig. 11). The average acceleration for the interval is the change in
velocity during the time interval, the net area, divided by the length of
the time interval.

5c. Velocity as an Integral. Starting with the defining equation for
acceleration, a(t) = dv(t)/dt, we change the symbol for time from t to t′

and then integrate both sides of the equation with respect to t′:
∫ t

t0

(

dv

dt′

)

dt′ =

∫ t

t0

a(t′) dt′ .

But:
∫ t

t0

(

dv

dt′

)

dt′ =

∫ t

t0

dv = v(t)− v(t0) ≡ v − v0 .

Then:

v − v0 =

∫ t

t0

a(t′) dt′ .

Rearranging,

v = v0 +

∫ t

t0

a(t′) dt′ . (6)

We can think of “a(t′) dt′” as representing the change in velocity over the
small time increment dt′. Then we can think of summing over all such
small changes in velocity made during each of many small time increments
in our interval from t0 to t. The integral is then the limit as the size of
each time increment approaches zero so the number of such increments in
our time interval goes to infinity.

5d. Displacement From Velocity Graph. The net area between
the v(t) curve and the time-axis is the integral

∫

v(t) dt, and this is the
displacement, the change in position during the period concerned (see
Fig. 12).

The average velocity for the interval is the change in displacement,
the net area, divided by the length of the time interval.

5e. Position as an Integral. Writing v(t) = dx(t)/dt in the form
dx(t′) = v(t′) dt′ and integrating, we get:

∫ x

x0

dx′ =

∫ t

t0

v(t′) dt′ .

16
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tft0

Figure 11. Graph of a hypothetical a(t). The net area
between the curve and the time axis gives the object’s change
in velocity from time t0 to time tf .

Integrating the left hand side, we get:

x(t) = x0 +

∫ t

t0

v(t′) dt′ , (7)

where v(t′)dt′ can be thought of as the small displacement of the particle
in the small increment of time dt′(see Fig. 12). We can think of the integral

vf

v0
POSITIVE

POS

NEGATIVE
tft0

Figure 12. Graph of a hypothetical v(t). The net area
between the curve and the time axis gives the displacement
from t0 to tf . The curve is not the v(t) corresponding to the
a(t) of Fig. 11.

17

MISN-0-7 14

as the sum of many small changes in displacement.

6. Constant Acceleration

In this section we will particularize the equations of motion to the
restricted case of objects undergoing constant acceleration. Such constant
acceleration occurs when the net force acting on an object is itself constant
in time. A number of real-life motions are close enough to this situation so
that the constant acceleration equations we develop can be used as good
approximations. The chief merit in using constant-acceleration equations
is their mathematical simplicity.

Starting with Eq. (6) and with a(t′) = a, a constant, we get:

v = v0 + at . (8)

Note that we have chosen t0 = 0. Substituting that result into Eq. (7) we
get:

x(t) = x0 +

∫ t

0

(v0 + at′) dt′

= x0 + v0

∫ t

0

dt′ + a

∫ t

0

t′ dt′

= x0 + v0t+
1

2
at2 .

(9)

If v0 is not given in a constant-acceleration problem, you can eliminate it
between Eqs. (8) and (9). Try it now and make sure you get: Help: [S-1]

x = x0 + vt−
1

2
at2 . (10)

Do not memorize that equation: just make sure you can derive it when
you need it.

Similarly, if t is not given you can eliminate it between Eqs. (8) and
(9). Try it now and make sure you get: Help: [S-1]

v2 − v20 = 2 a (x− x0) . (11)

Remember, whenever you see a, rather than a(t), as in the equations of
this section, it means that the equations you are looking at are valid only
for problems involving constant acceleration. If the acceleration is not
constant, do not use them: instead, use equations involving a(t).

18
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A. Communicating Word-Problem Solutions

In order for you to communicate the fact that you have solved a word-
problem and have understood your solution, we have found from experi-
ence that the most effective lay-out is the one which is commonly used
for communication in the professional scientific and engineering journals.
We introduce you to a slight variation here as we give one more example.

Example:

Given: x(1.0 s) = 7.0m;
v(t) = αt2 + βt+ γ;α = 9.0m/s3;
β = 4.0m/s2; γ = −8.0m/s.

Find: a(t) for t = 2.0 s and t = 4.0 s, and x(t).

a. a(t) =
dv(t)

dt
= 2αt+ β

a(2.0 s) = (2)(9.0m/s3)(2.0 s) + (4.0m/s2)

= 36.0m/s2 + 4.0m/s2

= 40.0m/s2

b. a(4.0 s) = (2)(9.0m/s3)(4.0 s) + (4.0m/s2) = 76.0m/s2

c. x(t) =
∫

v(t) dt =
αt3

3
+
βt2

2
+ γt+ C.

This can be written in a more interesting manner by noting that the
position at t = 0 is x(0) = C:

x(t) = x(0) +
αt3

3
+
βt2

2
+ γt.
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d. x(t) = x(0) +
αt3

3
+
βt2

2
+ γt

7.0m = x(0)+
(9.0m/s3)(1.0 s3)

3
+
(4.0m/s2)(1.0 s2)

2
+(−8.0m/s)(1.0 s)

x(0) = 7.0m− 3.0m− 2.0m + 8.0m = 10.0m.

x(t) = 10m +
αt3

3
+
βt2

2
+ γt

Notice that:

1. There is a vertical alignment of equality signs (=) as much as pos-
sible;

2. units, such as meters and seconds, are written in explicitly and their
appropriate powers are computed algebraically;

3. symbolic answers are obtained first and are boxed, then numerical
answers are obtained and boxed (the substitution of numbers for
symbols being clearly shown); and

4. there is no extraneous material.

How did the above example shown above come to look so neat? The
solution was first written out on scratch paper with false starts, erasures,
crossed out parts, and other extraneous material. The pertinent parts
were then arranged on this sheet in the form shown.
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PROBLEM SUPPLEMENT

Note: Problems 14-17 are also on this module’s Model Exam.

1. A particle moving along a straight line has the following positions at
the indicated times:

t(in s) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x(in m) 5.2 5.5 5.9 6.4 7.0 7.7 8.5 9.4 10.4

a. Use the table to determine the average velocity:

i. for the interval t = 0 s to t = 0.5 s,

ii. for the interval t = 0.5 s to t = 0.8 s,

iii. for the interval t = 0 s to t = 0.8 s.

b. Determine the approximate instantaneous velocity from the x vs t
curve:

i. at t = 0.4 s,

ii. at t = 0.5 s.

c. Does the instantaneous velocity become equal to the average ve-
locity at the midpoint of displacement or the midpoint of time?
Why?

d. Indicate how to determine the above velocities on a position-time
graph.

2.

x

t

a. A graph of x vs t for a particle in straight-line motion is shown in
the sketch. For each interval, indicate (above the curve) whether the
average velocity vav is +, −, or 0, and (below the curve) whether the
acceleration ax is +, −, or 0.

b. Locate all points on the graph where the instantaneous velocity is
zero.
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3. The position of an object moving in a straight line is given by x =
A+Bt+ Ct2, where A = 1.0m, B = 2.0m/s and C = −3.0m/s2.

a. What is its average velocity for the interval from t = 0 to t = 2.0 s?

b. What are its (instantaneous) velocities at t = 0 and t = 2.0 s?

c. What is its acceleration at each of these times?

4. A rocket is fired vertically, and ascends with a constant vertical ac-
celeration of +20.0m/s2 for 80.0 s. Its fuel is then all used and it
continues with an acceleration g = −9.8m/s2. Air resistance can be
neglected.

a. What is its altitude 80.0 s after launching?

b. How long does it take to reach its maximum altitude?

c. What is this maximum altitude?

5. A particle moves along the x-axis with acceleration a(t) = A + Bt2,
starting from rest at x = 5.0m and t = 0. Find its position x(t).

6. You have leveled an air track and then placed a block under one end
of the track. Using photocell gates and a timer, you find the length of
time t it takes a glider on the track to move some convenient distance
x − x0. Determine the acceleration ax of the glider from these data:
x− x0 = 100.0 cm, t = 4.053 s.

7. Water drips from a shower nozzle onto the floor 72 inches below. Ne-
glect air resistance.

a. How fast are the drops falling when they strike the floor?

b. How long does it take a drop to fall?

8. A lifeguard is standing on the edge of a swimming pool when she
drops her whistle. The whistle falls 4.0 ft from her hand to the water.
It then sinks to the bottom of the pool at the same constant velocity
with which it struck the water. It takes a total of 1.0 s to go from
hand to bottom.

a. How long was it falling through the air?

b. How long was it falling through the water?

c. With what velocity did it strike the water?

d. How deep was the pool?
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9. A truck traveling at 60.0mph (88 ft/s) passes a car pulling out of a
gas station. The driver of the car instantaneously steps on the gas
and accelerates at 8.0 ft/s2 and catches the truck in 0.200mi (1056 ft).
How fast was the car traveling when the truck passed it and how long
did it take to catch the truck?

10. In a certain amusement park, a bell will ring when struck from below
by a weight traveling upward at 10.0 ft/s. How fast must a weight
be projected upward to ring a bell which is 36 feet above the ground?
How long does it take to hit the bell?

11. Suppose that after many years of patient waiting, a radar tracking
station was able to track an unidentified flying object (UFO). Initially
the UFO was at rest, but as soon as it was sighted it started to move
away from the station in a straight line. Its speed along this line was
measured to be v = αt−βt3 where α = 300mi/s2 and β = 0.75mi/s4

during the time it was observed, until it disappeared 20 s after first
sighting.

a. How fast was the UFO going when it disappeared?

b. What was its acceleration when it first started to move?

c. How far did the UFO go during the 20 s?

12. A particular lightning flash is seen 5.0 s before the thunder is heard.
How far away is the thunderstorm?

13. A cyclist accidentally drops a padlock off the side of a high bridge.
One second later he disgustedly throws the key downwards at 12m/s
after it. Does the key overtake the padlock? If so, when and where?

14. The position of a particle is given by: x = A−Bt+Dt3 − Et4.

a. Find the velocity.

b. Find the acceleration.

c. Find average velocity for the interval t = 0 to t = 3 s.

15. A physics professor at the football stadium drives two miles home at
30mph to get her football tickets, discovers them in her purse, and
immediately drives back at 20mph because the traffic is worse. What
was her average velocity for the round trip?

16. A salesman brags that a car will accelerate from 10mi/hr (4.47m/s)
to 75mi/hr (33.5m/s) in 12 s.
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a. Find the average acceleration in m/s2 during this time interval (do
not assume constant acceleration).

b. Assuming constant acceleration, find the distance and time at
which the car would attain the speed of 55mi/hr (24.6m/s), start-
ing from 10mi/hr.

17. a. A graph of x vs t for a particle in straight line motion is shown in
the sketch.

x

t

For each interval between the hash marks:

i. mark, above the curve, whether the average velocity vav is +, −,
or 0; and,

ii. mark, below the curve, whether the acceleration a is +, −, or 0.

b. Identify all points on the graph where the instantaneous velocity
is zero.

Brief Answers:

1. a. vav(0−5) =
x5 − x0
t5 − t0

=
7.7m− 5.2m

0.5 s
=
2.5m

0.5 s
= 5.0m/s

vav(5−8) =
x8 − x5
t8 − t5

=
10.4m− 7.7m

0.8 s− 0.5 s
=
2.7m

0.3 s
= 9.0m/s.

vav(0−8) =
x8 − x0
t8 − t0

=
10.4m− 5.2m

0.8 s
=
5.2m

0.8 s
= 6.5m/s

b. v4 =
x5 − x3
t5 − t3

=
7.7m− 6.4m

0.5 s− 0.3 s
=
1.3m

0.2 s
= 6.5m/s

v5 =
x6 − x4
t6 − t4

=
8.5m− 7.0m

0.6 s− 0.4 s
=
1.5m

0.2 s
= 7.5m/s
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Note: You might have chosen different time intervals.

c. Inspection of the table shows that the instantaneous velocity, as
indicated by the increases in displacement in each time interval, is
increasing uniformly, indicating that the acceleration is constant.
Combining v = v0 + at and vav = (v + v0)/2, we get vav = v0 +
(a t/2) which shows that the average velocity occurs at time t/2,
as shown by the calculations above.

d. See Figs. P1a-c.

2. a. See the figure.

x
0

0-

0

-

0
-

+

t

b. Highest point and lowest segment of the curve.

3. a. vav =
∆s

∆t
=
(A+Bt2 + Ct22)− (A+Bt1 + Ct21)

t2 − t1
At t1 = 0, t2 = 2 s:

vav =
(A+Bt2 + Ct22)− (A)

t2
=

t2(B + Ct2)

t2
= B + Ct2

= (2.0m/s) + (−3.0m/s2)(2.0 s) = 2.0m/s− 6.0m/s

= −4.0m/s.
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x (meter)

t (sec)0.5 s

0.3 s

2.5 m5.0 m s
-1

9.0
m

s
-1

2.7 m

11

10

9

8

7

6

5
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 13. The triangles show how to calculate the average
velocities for the intervals t0 − t5 and t5 − t8.

x (meter)

t (sec)0.8 s

0.2 s

1.5 m
6.5

m
s
-1

6.5
m

s
-1

5.2 m

11

10

9

8

7

6

5
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 14. The triangles show that the average velocity for
the interval t0 − t8 equals the instantaneous velocity at t4.
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x (meter)

t (sec)0.8 s

0.2 s

1.5 m
6.5

m
s
-1

7.5
m

s
-1

5.2 m

11

10

9

8

7

6

5
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 15. The triangles show that the instantaneous ve-
locity at t5 (the approximate midpoint of displacement) does
not equal the average velocity for the interval t0 − t8.

b. v(t) =
dx(t)

dt
=

d

dt
(A+Bt+ Ct2) = B + 2Ct

v(0) = B = 2.0m/s

v(2.0 s) = 2.0m/s + 2(−3.0m/s2)(2.0 s) = −10m/s.

c. a(t) =
dv(t)

dt
=

d

dt
(B + 2Ct) = 2C = −6.0m/s2 at t1 and t2.
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4. Given v0 = 0, a = +20m/s
2, t = 80 s, g = −10m/s2,

a. x1 = v0t+
1

2
at2

= 0 +
1

2
(20m/s2)(80 s)2 = 6.4× 104m

v = v0 + at = 0 + (20m/s2)(80 s) = 1600m/s.

The rocket continues upward until it stops;

t =
v − v0
g

=
0− 1600m/s

−10m/s2
= 160 s.

b. Total time to rise = 80 s + 160 s = 2.4× 102 s.

Distance upward after burnout:

x = vbt+
1

2
gt2

= (1600m/s)(160 s) +
1

2
(−10m/s2)(160 s)2 = 128, 000m.

Alternatively,

v2 − v20 = 2 a x

x =
−v20
2a

=
−(1600m/s)2

2(−10m/s2)
= 128, 000m.

c. Maximum altitude = 64, 000m + 128, 000m = 1.92× 105m

5. Since ax =
dvx

dt
, you can write

vx =
∫

dvx =
∫

axdt =
∫

(A+Bt2)dt = A
∫

dt+B
∫

t2dt

= At+
1

3
Bt3 + C.

Set t = 0 to obtain 0 = vx(0) = C.

Next,

x =
∫

dx =
∫

vxdt =
∫

(At+
1

3
Bt3)dt =

1

2
At2 +

1

12
Bt4 +D

or:

x(t) =
1

2
At2 +

1

12
Bt4 +D.

This time, the initial condition tells us that D = 5.0m; so the final
expression is
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x(t) =
1

2
At2 +

1

12
Bt4 + 5.0m.

6. vav =
x− x0

t
=
100.0 cm

4.053 s
= 24.67 cm/s.

x− x0 = v0t+
1

2
at2

a = [(x− x0)− v0t] 2/t
2.

If we set v0 = 0 at t = 0,

a =
2(x− x0)

t2
=
2(100.0 cm)

(4.053 s)2
= 12.18 cm/s2.

If v0 > 0 at t = 0, a < 12.18 cm/s
2.

7. Since this problem is one-dimensional, it is convenient to take the
direction for the positively-increasing x-axis as downward. Then x =
72 in = 6 ft, v0 = 0 at t = 0, a = g = 32 ft/s2,

a. v2 − v20 = 2 a x

v = (2 a x)1/2 =
[

(2)(32 ft/s2)(6 ft)
]1/2

= 20 ft/s.

b. v − v0 = at

t =
v

a
=
20 ft/s

32 ft/s2
= 0.62 s.

Alternatively,

x = v0t+
1

2
at2

t = (2x/a)1/2 =

[

(2)(6 ft)

32 ft/s2

]1/2

= 0.615 s. The difference in time

results from rounding error.

8. a. x(t) = x(0) + v(0)t+
1

2
at2.

We orient the x-axis to increase positively downward so a = g. We
put t = 0 at the instant of drop so v(0) = 0 and we put the origin
at the hand so x(0) = 0. Let da ≡ distance through air; by (1) it
is:

da =
1

2
gt2a,
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where ta ≡ time through air.

ta = (2da/g)
1/2 =

[

2(4.0 ft)/(32 ft/s2)
]1/2

=

(

1

4
s2
)1/2

=
1

2
s.

b. Let tw ≡ time in water, tt = total time from hand to bottom
= tw + ta

tw = tt − ta = 1.0 s−
1

2
s =

1

2
s.

c. Velocity at water ≡ vw = v(ta) = gta = (32 ft/s
2)

(

1

2
s

)

= 16 ft/s.

d. Let dw ≡ distance in water = vwtw = (16 ft/s)

(

1

2
s

)

= 8 ft.

9. Time =
distance traveled

velocity of truck
=
1056 ft

88 ft/s
= 12 s.

For the car, x = v0t+
1

2
at2,

v0 = (x−
1

2
at2)/t

= x/t−
1

2
at =

1056 ft

12 s
−
1

2

(

8 ft/s2
)

(12 s) = 40 ft/s.

10. Take x = 36 ft, v = 10 ft/s, a = g = −32 ft/s2.

v2 − v20 = 2ax

v0 = (v
2 − 2ax)1/2 =

[

(10 ft/s)2 − 2(−32 ft/s2)(36 ft)
]1/2

,

= (2400 ft2/ s2)1/2 = 49 ft/s

t =
v − v0
a

=
10 ft/s− 49 ft/s

−32 ft/s2
= 1.22 s.

Checking:

x = v0t+
1

2
at2

= (49 ft/s)(1.22 s) +
1

2
(−32 ft/s2)(1.22 s)2 = 36.0 ft.
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It is often convenient to carry an extra significant figure in calcula-
tions.

11. v(t) = αt− βt3; α = 300mi/s2, β =
3

4
mi/s4.

a. v(20 s) = (300mi/s2)(20 s)− (
3

4
mi/s4)(20 s)3

= 6.0× 103mi/s− 6.0× 103mi/s = 0.

b. a(t) =
dv(t)

dt
= α− 3βt2.

When the object “first started to move” probably means t = 0
since that is the first time when v = 0. The acceleration at that
time was:

a(0) = α = 300mi/s2.

c. x(t) =
∫

(αt − βt3)dt =
αt2

2
−

βt4

4
+ C. x(0) = C, hence x(t) −

x(0) =
αt2

2
−

βt4

4
. Now let d(t) ≡ distance traveled since t = 0,

which is also the distance traveled since v = 0. Then:

d(t) = x(t)− x(0) =
αt2

2
−
βt4

4
,

d(20 s) =
(300mi/s2)(20 s)2

2
−

(

3

4
mi/s4

)

(20 s)4

4

= 6.0× 104mi− 3.0× 104mi = 3.0× 104mi.

12. Velocity of light = 3.0× 108m/s.

Velocity of sound = 3.3× 102m/s.

We may neglect the time it takes for light to reach us.

x = vt = (3.3× 102m/s)(5.0 s) = 1.7× 103m.

13. x(t) = x(0) + v(0)t+ at2/2.

We orient x(t) downward, so a = g = 9.8m/s2.

For the padlock, x = gt2/2.

For the key, v0 = 12m/s, x = v0(t− 1.0 s) +
1

2
g(t− 1.0 s)2.
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Solving simultaneously,
1

2
gt2 = v0(t− 1.0 s) +

1

2
g(t− 1.0 s)2

When: t = 3.2 s after dropping the padlock.

Where: x = 51m.

14. a. v = −B + 3Dt2 − 4Et3.

b. a = 6Dt− 12Et2.

c. vav = −B + 9s
2D − 27s3E.

15. Average Velocity = vav =
x(tfinal)− x(tinitial)

tfinal − tinitial
= 0. Note tht the

average speed is not zero.

16. a. a = 2.42m/s2, x = 228m.

b. x = 121m, t = 8.32 s.

17.

0 0

0

0

00
+

+ +

+
0

-

-

-

v = 0 v = 0

v = 0
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-Sect. 6)

The two referenced equations each contain the symbol that you are being
asked to eliminate. Label either one of the equations #1, the other #2.
Solve equation #1 for the symbol. You end up with:

symbol = some stuff.

Now, everywhere that the symbol occurs in equation #2 you must re-
place it with the some stuff. Because you substituted for it, the symbol
is gone from the equation.
If necessary, solve the resulting equation for whatever is of interest.
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MODEL EXAM

1. See Output Skill K1 in this module’s Problem Supplement.

2. See Problem 14 in this module’s Problem Supplement.

3. See Problem 17 in this module’s Problem Supplement.

4. See Problem 15 in this module’s Problem Supplement.

5. See Problem 16 in this module’s Problem Supplement.
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