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STATIC EQUILIBRIUM AND THE

CENTERS OF GRAVITY AND MASS

by

Peter Signell and Charles Lavine

1. Introduction

1a. Conditions for Motionlessness. An important question, with
widespread application in physics and engineering, is: Under what condi-
tions will a motionless system not tend to start moving in any direction
or rotating about any axis; that is, what are the conditions for “static
equilibrium?” The answer is: When the resultants of the forces and the
torques acting on the system are zero.

1b. Dealing With Extended Objects. The objects considered in
this unit are extended objects; that is, they have finite size in contrast to
mathematically idealized point objects. The study of extended objects,
acted upon by gravity and able to rotate, brings to mind this question:
How do we take into account the weight of each infinitesimable part of
the object? We certainly do not want to draw a vector force diagram
for each infinitesimal element and then compute the torque on each such
element. The answer is to use the rather simple concept of the object’s
“Center of Gravity,” which, for objects small compared to the earth, is
just the object’s Center of Mass. We will explore these concepts at some
length and develop their use in solving static equilibrium problems.

2. Application to Extended Objects

2a. Zero Resultant Force and Torque. For static equilibrium to
occur it is not enough that the sum of all of the forces on an object be
zero. This can be seen by referring to the object shown in Fig. 1. The

Figure 1. Two equal but opposite
forces that tend to rotate an object.
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object is not in equilibrium in spite of the fact that the net force is zero.
Two forces act on the object. They are equal in magnitude and oppositely
directed so the resultant force is zero. Because the forces are not along
the same line, their effect is to tend to rotate the object (clockwise for
the forces shown in Fig. 1).

The system in Fig. 1 is not in static equilibrium because the forces
produce a net torque which will be accompanied by rotational accelera-
tion. Complete equilibrium will occur only when the net force and the
resultant torque, relative to any point whatever, are both zero. Hence,
with forces ~F1, ~F2, . . ., ~Fn producing torques ~τ1, ~τ2, . . ., ~τn relative to
some arbitrary fixed point, the conditions for equilibrium are that the
resultant force, ~FR, and the resultant torque, ~τR, are both zero:

~FR ≡
n
∑

i=1

~Fi ≡ ~F1 + ~F2 + · · ·+ ~Fn = 0 , (1)

~τR ≡
n
∑

i=1

~τi = ~τ1 + ~τ2 + . . .+ ~τn = 0 . (2)

2b. Using Vector Components. In finding solutions to problems,
component equations are often found to be more useful than vector equa-
tions such as Eqs. (1) and (2). To find the Cartesian x-component equa-
tions equivalent to Eqs. (1) and (2), we simply multiply each of those equa-
tions by the x-coordinate unit vector, x̂, and obtain the x-components of
the resultant force and torque vectors:

FRx = ~FR · x̂ =

N
∑

i=1

(~Fi · x̂) =
N
∑

i=1

Fix = 0 , (3)

τRx = ~τR · x̂ =

N
∑

i=1

(~τi · x̂) =
N
∑

i=1

τix = 0 , (4)

where Fix indicates the x-component of the ith force. There are similar
equations for the y- and z-components, obtained through multiplying by
the unit vectors ŷ and ẑ rather than by x̂. Note that a force or torque com-
ponent may be either positive or negative depending upon the direction
of the force in relation to the direction of the corresponding coordinate
axis.

6
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3. The Center of Gravity

3a. When Gravity is the Force. The weight of an object is a force
due to the gravitational attraction between the matter in the object and
the matter in the earth. This gravitational pull should not be thought
of as a single force between the earth and the body as whole. Each sub-
microscopic particle that makes up the body experiences a gravitational
force due to the presence of the large amount of matter comprising the
earth. It is the sum of all these nearly parallel forces that make up the
resultant force we call the weight of the object. The point at which this
single force, equal to the resultant force, must act to have the same effect
as all of the forces between the constituent particles and the earth is called
the “center of gravity” (hereafter CG).

3b. The Center of Gravity. When no forces other than gravity
are acting on an object, we can always find a point called the object’s
“Center of Gravity” where, for purposes of static equilibrium, the object’s
mass may be considered to be concentrated. By this we mean that we
can replace the actual object by a weightless rigid structure which has
the same shape as the object but whose weight occurs entirely at the
object’s Center of Gravity. An object’s Center of Gravity is a single point
whose position can be calculated from the distribution of weight within
the actual object. Once the position of the Center of Gravity, ~rCG, has
been determined, the resultant gravitational torque on the object is given
by (see this module’s Appendix A):

~τR = ~rCG ×Wĝ , (5)

where ĝ is a unit vector pointing downward, toward the center of the
earth, and W is the weight of the object (the weight of the object is
the magnitude of the gravitational force on the object). If the object is
to be in static equilibrium, the resultant torque must be zero. Solving
a static equilibrium problem for an extended object usually begins with
determining the location of the object’s Center of Gravity. Note that
we have not specified any particular origin for computing the vector to
the Center of Gravity, so that origin could be anywhere and the equation
would still be valid. In general, the origin is chosen as a point about which
the system would naturally rotate, such as the point of suspension of the
system or a point at which the system is in contact with the ground or
with a road.

3c. Locating the Center of Gravity Experimentally. To experi-
mentally determine the center of gravity of an object we suspend it from

7

MISN-0-6 4

(a) (b) (c)

Figure 2. Locating the Center of Gravity of an object by
drawing vertical lines from several different points of suspen-
sion.

any point on its surface and draw a vertical line through the object from
that point downward, as in Fig. 2a. We then pick some different point
on the surface of the object and repeat the procedure, as in Fig. 2b. The
point where the two lines cross is the Center of Gravity. If we repeat the
procedure again, as in Fig. 2c, all three lines will cross at the Center of
Gravity. Any number of such lines can be drawn and the lines will all cross
each other at the Center of Gravity (derived in Appendix C; Appendices
A and B are prerequisites).

¤ Cut out an oblong piece of cardboard or wood and suspend it from
an edge using a thread or string as appropriate for its weight. Then: (1)
carry out the above-outlined procedure and see for yourself that all of the
lines you draw on the object, as you suspend it from diffent points on
its edge, really do cross each other at the same point; and (2) suspend
the object from your newly found center of gravity by poking a needle or
pencil through the point of intersection and show that the object has no
preferred rotational orientation about this point.

3d. Locating the Center of Gravity by Calculation. The vector
to the Center of Gravity of a system of N particles, for cases where the
system is small compared to the size of the earth, can be calculated to
high accuracy from this equation for the system’s Center of Mass (derived
in Appendix A):

~rCG = ~rCM =
1

M

N
∑

i=1

mi ~ri (system small compared to earth) , (6)

8
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THE

BAR

xR

(0,0) b

h

Figure 3. Determining the equilib-
rium point of suspension of a tringu-
lar sign.

where the ith particle has massmi and position vector ~ri. For an extended
object we have a similar equation (derived in Appendix B; Appendix A is
prerequisite):

~rCG = ~rCM =
1

M

∫

~r dm(~r) (object small compared to earth) , (7)

where the integral is over the volume of the extended object.

4. A Calculational Example

The owner of the Triangle Bar wishes to erect a sign (of triangular
shape, naturally) from a single point, as shown in Fig. 3. The owner
needs to find the distance xR at which the sign will balance. The sign is
exceedingly small compared to the size of the earth and it is an extended
object so we use Eq. (7).

We start by taking the x-component of Eq. (7):

xCG = xCM =
1

M

∫

x dM . (8)

To convert to an integral over space, we define the surface density of the
sign, its mass per unit area, as σ so that M = σ A and dM = σ dA. Here

y

h

dx

x b

Figure 4. An element of area with
constant x for determining xCM for
the sign in Fig. 3.
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y

h

dy

x b

Figure 5. An element of area with
constant y for determining yCM for
the sign in Fig. 3.

A is the area of the sign. Then we can rewrite Eq. (8) as:

xCM =
1

A

∫

x dA . (9)

We now interpret dA to be all parts of the area that have the same value
for x. An example is shown as the shaded area in Fig. 4. The size of the
area is dA = y dx and all parts of it have the same value for x. Therefore
the integral over all area becomes:

xCM =
1

A

∫ b

0

x y(x) dx . (10)

We interpret this integral as: “We weight each element of area, dA =
y(x) dx, with its value of x, and integrate over the whole area.” Now
y(x) = hx/b and A = bh/2 so we get:

xCM =
2

bh

∫ b

0

x
hx

b
dx =

2

b2

∫ b

0

x2 dx =
2

3
b , (11)

hence:

xCG =
2

3
b .

¤ Show that the y-position of the Center of Gravity is at h/3. Help: [S-2]
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A. Centers of Gravity and Mass for a Particle System

We treat the case of a system of point particles near the surface of the
earth and we assume that gravity is the only force acting on the particles
in the system. This means that the force on each particle in the system is
just the force of gravity, the particle’s weight. We write the weight of the
ith particle as ~wi, whereupon the gravitational torque on the ith particle
becomes:

~τi = ~ri × ~Fi = ~ri × ~wi . (12)

Then Eq. (4) for the resultant torque on the system is:

~τR =

N
∑

i=1

~τi =

N
∑

i=1

~ri × ~wi . (13)

The weights are all forces in the downward direction, toward the center
of the earth. We denote that direction with the unit vector ĝ so ~wi = wiĝ
and we have:

~τR =
N
∑

i=1

~ri × ~wi =
N
∑

i=1

~ri × wiĝ =

(

N
∑

i=1

~riwi

)

× ĝ , (14)

where we have factored out the cross product with ĝ because it is common
to all terms in the sum. The vector sum in the parenthesis in Eq. (14) is
just the sum of the position vectors to the individual particles but with
each position vector weighted by the weight of the particle. This vector
sum, divided by the weight of the system, is the “Center of Gravity” of
the system:

~rCG =
1

W

N
∑

i=1

wi ~ri . (15)

Finally, we rewrite Eq. (15) to emphasize that each particle’s position
vector is weighted by the particle’s fraction of the system’s weight:

~rCG =

N
∑

i=1

wi

W
~ri . (16)

Using Eq. (16), Eq. (14) can be written:

~τR = ~rCG ×Wĝ . (17)

This demonstrates that the resultant gravitational torque on a system of
particles is exactly the same as what would be produced by a single point
particle weighing W , located at the system’s Center of Gravity.

11
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We can write the weight of each contributing particle as its mass
times the acceleration of gravity, g, and the total weight of the system,
W , as g times the total mass of the system, M . Then Eq. (16) becomes:

~rCG =
1

M

N
∑

i=1

mi ~ri (system small compared to earth) . (18)

For an ordinary-size system near the surface of the earth, this equation
for the Center of Gravity, Eq. (19), no longer contains any reference to
gravity. In fact, it is the equation that defines the position vector to the
“Center of Mass” of the system, defined by giving each particle’s position
vector a weight equal to its fraction of the mass of the system of particles:1

~rCM ≡ 1

M

N
∑

i=1

mi ~ri . (19)

Then one can write:

~rCG = ~rCM (system small compared to earth) , (20)

B. Centers of Gravity and Mass for an Object

Any extended object can be treated as if it is composed of many in-
finitesimal objects, each having an infinitesimal mass dm that contributes
to Eq. (16). Then the sum in Eq. (16) becomes an integral over the entire
object:2

~rCG =
1

M

∫

~r dm(~r) (object small compared to earth) , (21)

Here the integral is over the mass of each infinitesimal element of the
extended object. The infinitesimal mass of the infinitesimal element at
position ~r has been written as dm(~r). Equation (21) is actually the defi-
nition of an extended object’s Center of Mass:

~rCM ≡ 1

M

∫

~r dm(~r) ,

1Note that in this sentence the word “weight” is used in the mathematical or sta-
tistical sense, not in the gravitational sense.

2The conversion of a sum over discrete objects to an integral over infinitesimal
parts of an extended object is developed in “Simple Differentiation and Integration”
(MISN-0-1).

12
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so one can write:

~rCG = ~rCM (object small compared to earth) , (22)

Note that Eq. (17) is the same as Eq. (22) so the same equation is
valid for both extended systems and discrete ones.

One can multiply Eq. (21) by the unit vector in the x-direction and
get the x-component of the vector to the Center of Gravity:

xCG =
1

M

∫

x dm . (object small compared to earth) , (23)

and there are similar equations for the y- and z-components, obtained by
using ŷ and ẑ in place of x̂.

C. The Center of Gravity is Below a Suspension Point

The reason why a vertical line drawn downward from any point of
suspension point passes through the suspended object’s the Center of
Gravity can be easily seen in Fig. 6. The figure shows an object suspended
from a point on its edge, but rotated so it is unbalanced. By this we
mean that if we let it go it will start swinging downward, rotating about
the point of suspension. The reason it starts rotating is because there
is a torque on the object equal to the vector product of the Center of
Gravity position vector and the weight vector of the object.3 In terms of
magnitude:

τR = |~rCG ×W ĝ| = rCG W sin θ .

where θ is the angle between the direction of the Center of Gravity position
vector and the downward direction of the force of gravity (see Fig. 6), W

3See Sect. 3 for the reason this is correct.

ĝ

CG

q

r
`
CG

point of
suspension

Figure 6. The object will experience a torque
about the suspension point, due to gravity, un-
less θ = 0.
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is the weight of the object, ~rCG is the distance from the poi. There is no
torque on the object only if θ = 0 and that is the case if we just let the
object hang downward without rotation. In such a case, a vertical line
drawn downward from the point of suspension will certainly pass through
the Center of Gravity, no matter what suspension point is used.

14
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PROBLEM SUPPLEMENT

Note 1: There is a lot of general problem-solving help on the current
topic in this module’s Special Assistance Supplement. We suggest you
look over that material before trying to solve the problems below.

Note 2: Problems 2, 10, and 11 also occur in this module’s Model Exam.

1.

1 cm

2 cm

3 cm

4 cm

5 cm

1cm 2cm 3cm 4cm 5cm 6cm 7cm 8cm

20 N

30 N

15 N

10 N

(forces act at the tail of each vector)

a. Find the resultant force of this set of parallel forces.

b. Find the resultant torques produced by this set of forces around
the points (x,y) = (0 cm,0 cm), (x,y) = (1 cm,3 cm), and (x,y) =
(1 cm,4 cm).

2.

T1

T2

30°

M

60°

Determine the tensions T1 and T2 in the ropes if the mass M weighs

15
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10 lb.

3.

M

45°

P

Determine the force exerted on the beam by the wall at point P if
the mass M weighs 20 lb and the weights of the cable and beam are
negligible.

4.

60°

cg

T

W = 2000 lb

P

A drawbridge weighing 2000 lb is suspended from the side of a castle
by a cable, as shown above.

a. Find the tension in the cable.

b. Find the force exerted on the bridge by the wall of the building
at point P . (Hint: you can consider the weight of the drawbridge
to be acting on its center of gravity at a point halfway along its
length.) Help: [S-1]
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5.

W = 3 N1 W = 1 N2

Fp

1_
3

m 2_
3

m

A uniform meterstick with two different weights on it is balanced on a
pivot as shown in the sketch. Assume that the weight of the meterstick
acts upon its center of gravity, which is located at the middle of the
meter stick.

a. Find the weight of the meterstick, Wms, in newtons.

b. Find the force Fp exerted by the pivot upon the meterstick.

6.

60°

60°

P
W = 1000 lb
`

boom

W = 2000 lb
`

load

A load of weight 2000 lb is suspended by a cable and boom from the
side of a building, as shown in the sketch. The boom weighs 1000 lb.
The center of gravity of the boom is halfway along its length.

a. Draw a one-body force diagram showing all the forces acting on
the boom.

b. Find the tension in the cable.

c. Find the force exerted by the wall on the boom at the pivot point
P .

17
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7.
y

xb

h

Find the center of mass of this right triangle with base b and height
h, assuming it has a constant surface mass density σ. (Hint: dM =
σ dy dx).

8.

1 m 2 m 3 m

2 m

1 m

y

x

Find the center of mass of the figure, assuming it has a constant
surface mass density.

9.

1m

1m 1.5m

y

x

Find the center of mass of this figure assuming it has a constant
surface mass density.

18
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10.

12'2'

A van is loaded so that the load on each pair of wheels, front and
back, is the same: 2400 pounds. The rear axle is 12 feet behind the
front axle. The rear overhang of the van extends two feet behind the
rear axle. If an additional weight of 600 pounds is loaded onto the
very back of the van what is the new load distribution of the front
and rear tires?

(Be sure to draw a correct one-body force diagram showing all of the
forces acting on the object under consideration.)

11. The mass of the earth is 5.98 × 1024 kilograms while the mass of the
moon is 7.34 × 1022 kilograms. The average earth-moon separation
(center-to-center) is 3.84×108 meters. Find the location of the Center
of Mass of the earth-moon system.

19
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Brief Answers:

1. a. FR = 5N, to the right

b. (0 cm,0 cm): τR = 0Nm
(1 cm,3 cm): τR = 15N cm, out of the page
(1 cm,4 cm): τR = 20N cm, out of the page
(Torques all different because resultant force is not zero).

2. T1 = 5 lb; T2 = 8.7 cm.

3. Fwall = 20 lb to the right.

4. a. T = 2000 lb. (NOT 2000 lb/cos 60◦) Help: [S-1] 4

b. Fwall,x = 1000
√
3 lb.= 1.7× 103 lb

Fwall,y = 1000 lb.

Magnitude is 2000 lb, directed at an angle of 30◦ above horizontal
to the right.

5. a. Wm.s. = 2N.

b. Fp = 6N.

6. a.

60°

60°
F
`

wall

W
`

boom

W
`

load

T
`

30°

b. T = 2500 lb.

c. Fwall,x = 1250
√
3 lb; Fwall,y = 1750 lb; Magnitude is 2783.88 lb,

directed at angle 38.95◦ above horizontal to right.

7. xCM = 2/3 b; yCM = 1/3h.

8. xCM = 19/15m; yCM = 16/15m.

9. xCM = 5/6m; yCM = 1.0m.

4See sequence [S-1] near the end of this module’s Special Assistance Supplement.
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10. Ff = 2300 lb

Fr = 3100 lb.

11. 4.66× 106 m from earth’s center.
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SPECIAL ASSISTANCE SUPPLEMENT

1. THE EQUILIBRIUM CONDITIONS

a. Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AS1

b. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AS1

2. APPLICATION OF THE CONDITIONS

a. Strategies for Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AS2

b. An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AS3

c. Forces Add to Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AS4

d. Torques Add to Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AS5

3. CENTER OF GRAVITY OR CENTER OF MASS

a. Volume Mass Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AS5

b. Surface Mass Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AS7

c. Constant Surface Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AS7

d. Guessing the CM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AS8

e. Objects with Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AS8

1. The Equilibrium Conditions

1a. Statement. Can you understand the two conditions that must
exist for an extended body to be in static equilibrium in a given force
environment?

1b. Properties. Remember that force and torque are both vector
quantities. In what direction is the torque associated with a given force
and reference moment arm? Because of the vector nature of force and
torque, the two equilibrium conditions in vector notation actually become
six scalar equations.

If forces are confined to a plane (say the x-y plane) then only three equa-
tions are useful, so only three unknowns may be found. Can you demon-
strate this to yourself?
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2. Application of the Conditions

2a. Strategies for Problem Solving.

1. Read the problem carefully so that you understand what is given
and what is asked for.

2. Draw a force diagram for the object in question. Include a represen-
tation of all forces both known and unknown. Remember that, in
general, it takes three numbers to express both the magnitude and
direction of a force. You may denote the three force components
(Fx,Fy,Fz), or as the magnitude of the force and two angles that
specify its direction, etc. Sometimes one force component is obvi-
ously zero and need not be considered further. Don’t forget forces,
such as gravity, which are imposed without contact. Note that the
force of gravity upon an object can always be considered as acting
upon the center of gravity (or the center of mass) of the object.

3. If you wish a complete solution (values found for all unknowns)
you need as many independent equations as unknowns. Using the
equilibrium conditions as expressed in component form, write the
necessary equations. It is usually possible to obtain simple torque
equations by carefully choosing the point about which the torques
are computed.

4. Solve the set of equations for the desired unknown forces.

5. Check to see that your results are reasonable, units correct, etc.

2b. An Example.

60°

L
2

L 1

Let us apply these problem solving strategies to an example. An L-shaped
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object consists of two very thin uniform beams joined rigidly so that they
make an angle of 90◦ with each other. One end of one of the beams is
pinned to a vertical wall making a 60◦ angle with the wall.

The point where the beams are joined is also tied to the vertical wall by
means of a horizontal cable (see sketch). The beam of length L1 = 5 ft,
weighs 150 pounds, while the beam of length L2 = 3 ft, weighs 90 pounds.
The system is in equilibrium.

The questions we wish to answer are: (a) What is the tension in the cable;
and (b) What force does the vertical wall exert on the lower end of beam
L1?

Because the system is in static equilibrium, we know that all of the forces
and torques on the object must add to zero, so we use this fact to find the
unknown forces. (The center-of-mass of each of the thin uniform beams
is in the middle of the beam).

1
.5

ft

2.5
ft

F
`

v

F
`

H

W = 150 lb1

W = 90 lb2

T
`

As has been emphasized, the first thing we must do is draw a one-body
diagram of the object under consideration (in this case the L-shaped ob-
ject) and replace each object (the wall, the cable, gravity) in contact with
it by the force this object exerts on the L-shaped object.

These are all the forces due to external agents acting upon the L-shaped
object. Note that because we didn’t know the magnitude or the direc-
tion of the force exerted by the wall, we have two unknowns and we’ve
represented these by an unknown horizontal force, ~FH , and an unknown
vertical one, ~FV . The conditions for equilibrium are:

(i) all the forces must add to zero (and, since no horizontal force can
cancel a vertical one, the horizontal and vertical forces must sepa-
rately add to zero); and
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(ii) all the torques about any point (we are free to choose the point)
must add to zero. We are free to choose any number of such points
because the object has no angular acceleration about any point.

2c. Forces Add to Zero. For the forces to add to zero, relative to
some fixed Cartesian Coordinate system, all of the components must sep-
arately add to zero. If our coordinate directions are (1) the horizontal,
and (2) the vertical directions in the plane of the page, and (3) the direc-
tion perpendicular to the page; then in the direction perpendicular to the
page there are no forces, so we need to consider only the two components
in the plane of the page. So,

FH = T and FV =W1 +W2 = 240 lb .

Now we need to find either FH or T and all forces will be known.

2d. Torques Add to Zero.

W
`

1 W
`

2

T
`

h

r1

r2

60°

60°

30°

30°

Taking torques about the point where FV and FH act on our object, the
torque due to these two forces are each zero. The torque of T is out of
the page, tending to produce clockwise rotation. So for equilibrium the
torque of T must equal the sum of the torques of W1 and W2.

From the condition that the clockwise and counterclockwise torques bal-
ance:

hT = r1W1 + r2W2

r1 =
L1

2
cos 30◦ =

√
3
L1

4
=

5
√
3

4
ft .

r2 = L1 cos 30
◦ +

L2

2
sin 30◦ =

(

5
√
3

2
+

3

4

)

ft .
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h = L1 cos 60
◦ =

L1

2
= 2.5 ft .

This allows us to solve for T ,

2.5 ftT =
5
√
3

4
ft× 150 lb +

(

5
√
3

2
+

3

4

)

ft× 90 lb.

T = 312.8 lb = FH

So all the forces on the L-shaped object are determined. ~FV and ~FH may
be added vectorially to find the magnitude and direction of the single
force the wall exerts on the object.

3. Center of Gravity, Center of Mass

3a. Volume Mass Distribution. The center of gravity and center
of mass of an extended object are defined in different ways, but are really
the same point.

The position of the center of mass of an object is defined by Text Eq. (??):

xCM =
1

M

∫

x dM

yCM =
1

M

∫

y dM

zCM =
1

M

∫

z dM,

or, in a more compact form,

~rCM =
1

M

∫

~r dM.

The integrals are taken over the entire mass of the object. We can make
the above equations easier to grasp if we replace the “infinitesimal mass
element” dM by the more physical infinitesimal volume element dV =
dx dy dz. If the mass density of the object is ρ(~r) = ρ(x, y, z),5 in units
of mass per unit volume (e.g., kg/m3) then the (infinitesimal) amount of
mass contained in the (infinitesimal) volume element dV around the point
~r is

dM = ρ (~r) dV,

5
ρ is a function of position—we allow the mass density to vary across the object.
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and so our definition of the center of mass becomes

xCM =
1

M

∫ ∫ ∫

x ρ(x, y, z) dx dy dz

yCM =
1

M

∫ ∫ ∫

y ρ(x, y, z) dx dy dz

zCM =
1

M

∫ ∫ ∫

z ρ(x, y, z) dx dy dz,

or, in a more compact form,

~rCM =
1

M

∫

~r ρ(~r) dV.

The integrals are now over the volume of the object, i.e., the shape of the
object determines the limits on the integrals.

Since M is the mass of the whole object, ρ(~r) is related to M by

M =

∫

ρ(~r) dV.

That is, M is the integral of ρ over the whole volume of the object.

3b. Surface Mass Distribution. A good many center-of-mass prob-
lems involve two-dimensional objects, which make the integrations a good
deal simpler. If the surface mass density σ(x, y), in units of mass per unit
area (e.g. kg/m2) is given, then the position of the center of mass is given
by:

xCM =
1

M

∫ ∫

xσ(x, y) dx dy

yCM =
1

M

∫ ∫

y σ(x, y) dx dy,

where the integrals are over the entire area of the object, and

M =

∫ ∫

σ(x, y) dx dy

relates the total mass M to the surface mass density σ(x, y).
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3c. Constant Surface Density. Most such two-dimensional prob-
lems involve a further simplification - an assumption that the surface mass
density is a constant, rather than a varying function of position. The only
tricky part of the problem lies in picking the right limits for the integrals.
Problem 7 in the Problem Supplement is of just this type. The surface
mass density σ is a constant, so the total mass of the object is

Mobject = σ

∫ ∫

dx dy =
1

2
bhσ,

since b h/2 is the area of the object. If we choose to integrate over y first,
then the limits on the integrals become y = 0 to y = (h/b)x for y, and
x = 0 to x = b for x, because the upper edge of the triangle is the line
y = (h/b)x, the right edge is the line x = b, and the bottom edge is the
line y = 0. Therefore, the position of the center of mass is given by:

xCM =
1

bhσ/2

∫ b

0

dx

∫ (h/b)x

0

dy xσ

and

yCM =
1

bhσ/2

∫ b

0

dx

∫ (h/b)x

0

dy y σ

The surface mass density σ is a constant and comes outside both integrals,
where it cancels out of the problem entirely.

We work out the integrals:

xCM =
1

bh/2

∫ b

0

dx

∫ (h/b)x

0

dy x

=
2

bh

∫ b

0

dxx |y|(h/b)x
0

=
2

bh

∫ b

0

dx (h/b)x2

=
2

b2

∣

∣

∣

∣

1

3
x3

∣

∣

∣

∣

b

0

=
2

3
b,
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and

yCM =
1

bhσ/2

∫ b

0

dx

∫ (h/b)x

0

dy y

=
2

bh

∫ b

0

dx

∣

∣

∣

∣

1

2
y2

∣

∣

∣

∣

(h/b)x

0

=
1

bh

∫ b

0

dx (h/b)2x2

=
h

b3

∣

∣

∣

∣

1

3
x3

∣

∣

∣

∣

b

0

=
1

3
h ,

The only conceptual problem was picking the right limits—the rest is
ordinary calculus and algebra.

3d. Guessing the CM. We can often guess the position of the center
of mass of a simple system. For instance, the center of mass of a sphere
with a constant mass density is just the center of the sphere. For any
object having a constant mass density, the center of mass is located at
the geometric center of the object.

3e. Objects with Holes. Another common type of center-of-mass
problem involves objects with “holes” or “chunks” cut out of them. Prob-
lems 8 and 9 are of this type. In problem 9, the object is a whole circle
with a smaller circular hole cut out of it. We can use a simple trick to
solve this type of problem.

Consider the fact that we can “reconstruct” a solid disc by adding together
the object we have in Problem 9 with the circular piece that was cut out of
the disc in order to make the object. More specifically, the integral of the
quantity ~rσ dx dy over the solid disc equals the integral of that quantity
over the object plus the integral of the quantity over the circular cutout:

∫

disc

~r σ dx dy =

∫

object

~r σ dx dy +

∫

cut-out

~r σ dx dy.

Furthermore, the centers of mass of each of the three things involved here
are:

~rCM,disc =
1

Mdisc

∫

disc

~rσ dx dy

~rCM,object =
1

Mobject

∫

object

~rσ dx dy
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~rCM,cut-out =
1

Mcut-out

∫

cut-out

~rσ dx dy

Combining all of the above equations yields the final result:

Mdisc ~rCM,disc =Mobject ~rCM,object +Mcut-out ~rCM,cut-out.

The masses are related by

Mdisc =Mobject +Mcut-out.

In the case of problem 9, the positions of the centers of mass of the solid
disc and the cutout are obvious:

xCM,disc = 1m; yCM,disc = 0

xCM,cut-out = (1 + 1/2)m = 3/2m; yCM,cut-out = 0 ,

which are the positions of the centers of the two circles in question.

Since the object has a constant surface mass density, the masses of the
things involved are

Mdisc = π (1m)2 σ = σ πm2 ,

Mcut-out = π

(

1

2
m

)2

σ =
1

4
σπm2 ,

Mobject =Mwhole circle −Mcut-out =
3

4
σπm2 .

Therefore, using the above handy equation:

(σπm2)(1m) =

(

3

4
σπm2

)

xCM,object +

(

1

4
σπm2

)(

3

2
m

)

(σπm2)(0) =

(

3

4
σπm2

)

yCM,object +

(

1

4
σπm2

)

(0) ,

which gives

xCM,object =
σπm3 − 3

8
σπm3

3

4
σπm2

=
5

6
m,

and
yCM,object = 0 .
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One can use the same technique to solve any similar problem. The equa-
tion used in this one particular case can be generalized to cover any object
consisting of a total object (abbreviated “total”) and a “hole” cutout:

Mtotal~rCM,total =Mobject~rCM,object +Mcut-out~rCM,cut-out

where:
Mtotal =Mobject +Mcut-out .

S-1 (from PS-problem 4)

1.

P

F T

W

f

Sketch a one-body diagram of the forces on the drawbridge, giving
the force at P an unknown magnitude F and an angle φ above the
horizontal.

2. Sum horizontal and vertical forces separately.

3. Sum the torques about P so as to eliminate the unknowns, F and
φ, from the equation. Assign the drawbridge an unknown length
`: it drops out.
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S-2 (from TX-Sect. 4c)

The integral for yCM proceeds similarly to that for xCM , starting with

yCM =
1

M

∫

y dM ,

and with dA = x dy as a strip of area all at the same value for y as in
Fig. 5. Then the integral is:

yCM =
1

A

∫ h

0

y x(y) dy .

We interpret this integral as: “We weight each element of area, x(y) dy,
with its value of y, and integrate over the whole area.”
x(y) = b− (by/h) so:

yCM =
2

bh

∫ h

0

y

(

b− by

h

)

dy =
2

h2

∫ h

0

(hy − y2) dx =
1

3
h .
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MODEL EXAM

1. See Output Skills K1-K3 in this module’s ID Sheet.

2.

12'2'

A van is loaded so that the load on each pair of wheels, front and
back, is the same: 2400 pounds. The rear axle is 12 feet behind the
front axle. The rear overhang of the van extends two feet behind the
rear axle. If an additional weight of 600 pounds is loaded onto the very
back of the van what is the new load distribution of the front and rear
tires?

(Be sure to draw a correct one-body diagram showing all of the forces
acting upon the object under consideration.)

3.

T1
T2

30°

W

60°

Determine the tensions T1 and T2 in the ropes if the mass M weighs
10 lb.

4. The mass of the earth is 5.98 × 1024 kilograms while the mass of the
moon is 7.34 × 1022 kilograms. The average earth-moon separation
(center-to-center) is 3.84×108 meters. Find the location of the center-
of-mass of the earth-moon system.

Brief Answers:

1. See this module’s text.
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2. See this module’s Problem Supplement, problem 10.

3. See this module’s Problem Supplement, problem 2.

4. See this module’s Problem Supplement, problem 11.
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