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TOOLS FOR STATIC EQUILIBRIUM

by

Leonard M.Valley, St. John’s University

1. Force Diagrams

1a. The Importance of Force Diagrams. In simplest terms, a
system in static equilibrium is one that does not move. Figure 1 shows
examples of common types of systems studied in this subject.

We never begin calculations to determine unknown forces in such
systems as those shown in Fig. 1 without first constructing a one-body
force diagram. This gives us added assurance that we understand the
system being analyzed and that we are using all the forces pertinent to
our calculations. In addition, such diagrams aid us in determining whether
the forces acting are concurrent or non-concurrent. The forces acting on
an object are concurrent if the lines of action of the forces all meet at
a common point (otherwise they are non-concurrent). In Figs. 2 and 4
dashed lines extended from the arrows indicate the lines of action. In
Fig. 1a the forces are concurrent while in Fig. 4 the forces on the beam
are non-concurrent. The importance of this distinction will be considered
in a later section.

1b. Example: A Hanging Weight. Figure 1(a) shows a weight
suspended by cords connected to point P and attached at two points A
and B on the ceiling. Our force diagram for the point P is shown in Fig. 2.
The three cords are the only force contacts with point P . If we know the
weight being supported we can represent the tension in the vertical cord

P

60° 30°
C

B

B

A

A

beam

support

Figure 1. Typical examples of static equilibrium: (a) A
weight suspended from cords; (b) A ladder resting against a
wall; (c) A uniform beam held by a cord and a support.
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Figure 2. Force di-
agram for point P of
Fig. 1(a).
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Figure 3. Force diagram of
the ladder in Fig. 1(b).

by a force ~W acting downward on P . For the other two cords we know the
directions of the forces but not the magnitudes. They are drawn as wavy
arrows to indicate the known directions but unknown lengths. Note: The
directions are discerned from certain properties of cords. A flexible cord
can only sustain a tension, that is, it can pull on point P but not push.
Furthermore, the cord will align itself in the same direction as the force
which it exerts.

1c. Example: A Leaning Ladder. Figure 1(b) shows a ladder of
given weight W resting against a wall. In this case we choose the ladder
as the object of interest. We assume the weight of the ladder to act at
its center C.1 The other two force contacts are at the floor and the wall.
Figure 3 shows our force diagram for the ladder. ~Fa is the force exerted
on the ladder by the floor and ~Fb is the force exerted on the ladder by the
wall. The direction and magnitude of forces ~Fa and ~Fb may be unknown.
We use wavy arrows to indicate a lack of knowledge of both direction and
magnitude.

1d. Example: A Balanced Beam. Figure 1(c) shows a uniform
beam resting on a support near one end and suspended by a cord near
the other end. We construct a force diagram for the beam. Again we
assume the weight to act at the center of the beam. In this case the cord
is assumed to be vertical and therefore the forces exerted by the cord
and the support are both vertically upward. In Fig. 4 these two forces
are shown as ~Fa and ~Fb. We use wavy arrows to indicate the unknown

1The reasons are examined in “Static Equilibrium” (MISN-0-6).
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Figure 4. Force Diagram for the beam in
Fig. 1(c).

magnitudes but known direction. Figure 4 shows our force diagram.

1e. Action/Reaction Forces. The concept of action-reaction forces
is useful in determining the forces that act on different parts of a system.
Experiment and intuition shows us that when one object exerts a force
on a second object, the second object always reacts by exerting a force on
the first. The forces in this “pair” always have the same magnitudes but
opposite directions. For example, looking at Figs. 1(b) and 3, ~Fa is the
force that the floor exerts on the ladder and hence the ladder pushes on
the floor with a force of − ~Fa (same magnitude, opposite direction). This
was summarized by Newton in his third law of motion: for every action
there is always an equal and opposite reaction.

¤ A lamp hangs from a ceiling, supported by two strings (see Fig. 5a).
The tension in string AB is 4.0 lb, while the tension in string BC is 5.35 lb.
Construct the force diagram for point B.

¤ A telecommunications tower is erected (see Fig. 5b.). If the tension in
the left side cable is 7500 lb, construct the force diagram for the tower.
(Data from Cook Communications Inc., Lansing, MI)

¤ For more examples see this module’s Special Assistance Supplement,
Sect. 2-3.

2. Concurrent Forces

2a. Static Equilibrium for a Point. Newton stated his first law as
something like this: every body persists in its state of rest or constant
velocity unless it is compelled to change by forces applied to it. One
interpretation of Newton’s first law as applied to objects staying at rest
is: the net force (the vector sum of all forces) acting on the body must
be zero. In Figs. 1a and 2 we show a point P which is at rest and hence
the net force must be zero. In other words, the vector sum of the forces
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Figure 5. (a) A lamp hanging from a ceiling; (b) a telecom-
munications tower.

acting must be zero:
~Fa + ~Fb + ~W = 0 (1)

Because the forces all act at the same point P , this is the only condi-
tion necessary for P to remain at rest. This is the condition for static
equilibrium of a point.

2b. Concurrent Forces on an Extended Object. There is a spe-
cial case of static equilibrium for extended (non-point) objects: if all the
lines of force intersect at some point P , the forces act just as if they all
originated at P . Even if P is geometrically not located on the object,
as in Fig. 6, this statement is still true (if it makes you feel better, you
can consider the object to be part of a much larger rigid structure that
includes point P ). Such forces are said to be “concurrent.”

Based on the above, we now state this equilibrium condition: If the
forces acting on a rigid object are concurrent, then the only condition
necessary for equilibrium is that the vector sum of the forces is zero. In
the case of the object in Fig. 6,

~Fa + ~Fb + ~W = 0 . (2)

is the equation for equilibrium.

In general, if a rigid object is acted upon by N concurrent forces the
equilibrium condition gives us:

~F1 + ~F2 + . . .+ ~FN ≡
N
∑

i=1

~Fi = 0 . (3)

8
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Figure 6. Forces can intersect outside the object.

2c. Cartesian Component Equations. If ~FR = 0, FRx and FRy

must also be zero. Thus, taking components of Eq. (3) gives:

FRx = F1x + F2x + . . .+ FNx =
N
∑

i=1

Fix = 0 ,

FRy = F1y + F2y + . . . FNy =

N
∑

i=1

Fiy = 0 . (4)

The equilibrium condition, Eq. (1), in component form is:

Fax + Fbx +Wx = 0 ,

Fay + Fby +Wy = 0 . (5)

These equations involve components of vectors and hence there may be
positive or negative values. In this case the values for Fax and Wy will
be negative while the others will be positive. (Wx = 0, as there is no
component of weight in the x-direction). Equations (5) become:

−Fa cos 60
◦ + Fb cos 30

◦ = 0 ,

Fa sin 60
◦ + Fb sin 30

◦ −W = 0 . (6)

We thus have two equations and two unknowns, allowing us to solve for
Fa and Fb if given W .

2d. Example: A Broken Leg. ¤ A Patient with a broken leg is
in the Health Center. To allow his leg to set, a “Bucks” traction device
(nothing to do with the cost involved) is used, as shown in Fig. 7. If the
traction required for the bone to set is 22 lb, find the weight needed to
produce this traction. (Data from the Michigan State University College
of Osteopathic Medicine.) (Ans. 14 lb; Help: [S-1] near the end of the
Special Assistance Supplement).

9
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?

25°

55°

Figure 7. A traction device for
setting broken bones.

¤ For more examples see this module’s Special Assistance Supplement,
Sect. 4.

2e. Example: A Ditched Car. ¤ A driver runs off the road in a
snowstorm (the kind we have in April) and becomes stranded in a ditch.
She knows she can’t use brute strength to pull the car out, so she tries an
alternate method. First, she ties a length of rope to a huge boulder, and
then connects it to her car. When a 40 lb force is exerted perpendicular
to the rope, the rope is displaced to an angle of 6◦ (see Fig. 8). What force
is then being exerted on the car? (Data from Southend Total, Lansing,
MI) (Ans.: 192 lb.)

3. Non-Concurrent Forces

3a. Torque for Non-Concurrent Forces. If the forces acting on a
body are not concurrent, there is a possibility that the object is not in
rotational equilibrium. Consider a door you are pushing open. The forces
exerted by the hinges and your hand are not concurrent and the door
is rotating. In contrast, the beam shown in Figs. 1 and 4 is acted upon

6°

F

Figure 8. Illustration of force amplification.

10



MISN-0-5 7

q

F
`

r
`

Figure 9. Force, ~F , with given line of action
and position vector ~r.

by forces which are not concurrent and it is not rotating. Thus a rigid
body which is acted upon by a set of non-concurrent forces may or may
not rotate. The statement of the conditions necessary to extend static
equilibrium to include non-rotation uses the concept of torque. In antici-
pation of the discussion of rotational equilibrium in another module,2 we
here define torque and calculate its value for simple cases.

3b. Definition of Torque. The torque, sometimes called the “mo-
ment” of a force, is defined to be (see Fig. 9):

~τ = ~r × ~F , (7)

where ~τ is the torque, ~r is the position vector from the “center of torque”
to any point on the line of action of the force, and ~F is the force. Torque
is a vector because it is the vector product (“cross product”) of ~r and
~F .3 From the definition of the vector product, the magnitude of ~r× ~F is
rF sin θ and its direction is determined by the right-hand rule (into the

page in this case). F sin θ is just the component of the force ~F perpen-
dicular to the position vector ~r. Letting F sin θ ≡ F⊥, the magnitude of
the torque is just r F⊥.

3c. Torque is Independent of Choice for ~r. The vector ~r that is
used to find a torque is not unique. Figure 10 shows only three of an
infinite number of ~r vectors which could be drawn from point O to the
line of action of the force ~F . Based on this diagram and the definition of
torque, Eq. (7), we get:

~τ = ~r1 × ~F = ~r2 × ~F = ~r3 × ~F . (8)

This ~τ is directed into the page and has magnitude:

τ = r1 F sin θ1 = r2 F sin θ2 = r3 F sin θ3 . (9)

2“Static Equilibrium, Center of Mass” (MISN-0-6).
3See “Vectors: Sums, Differences, and Products” (MISN-0-2). Actually, torque is

a psuedovector, which means that it behaves like a vector except under a mirror-like
inversion.
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Figure 10. A force, ~F , shown with three possible position
vectors.

Using Fig. 10, we see that:

r1 sin θ1 = r2 sin θ2 = r3 sin θ3 = ` , (10)

and hence from Eq. (9), any one of the three could be used. Simpler still
is the equivalent expression:

τ = ` F . (11)

Here `, the perpendicular distance from point O to the line of action of
the force, is called the force’s “lever arm” or “moment arm.” As a result,
the magnitude of the torque is always equal to the product of the lever
arm and the magnitude of the force.

3d. Torque from Two or More Forces. Since torque is a vector,
if there are two or more torques relative to point O, the resultant torque
about point O is just the vector sum of the individual torques. From
Fig. 11,

~τ1 = ~r1 × ~F1

~τ2 = ~r2 × ~F2

yielding a resultant torque: ~τ = ~τ1 + ~τ2.

F
`

2

F
`

1

o

r
`

1

r
`

2

Figure 11. Two forces producing a resultant
torque.
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Figure 12. A gearbox.
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Figure 13. A test of strength.

3e. Example: A Gearbox. ¤ A reduction gearbox is shown in
Fig. 12. The torques on it, about the point of intersection of the shafts, a
point in the xz-plane, are 20 ẑ ft lb and 4 x̂ ft lb. Find the total resultant
torque on the gearbox. (Ans. The vector sum.)

3f. Example: A Test of Strength. ¤ At a local count fair, a barker
challenges you to the “game” shown in Fig. 13. You place your wrist in the
strap, flex your arm, and try to exert a force of 200 lb on the spring scale.
If the distance from your wrist to your elbow is 9 inches, find the torque
exerted by the strap about your elbow and the force on your muscle.
(Ans. 1800 in lb and 1800 lb.)

Acknowledgments

Preparation of this module was supported in part by the National
Science Foundation, Division of Science Education Development and Re-
search, through Grant #SED 74-20088 to Michigan State University.
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MISN-0-5 PS-1

PROBLEM SUPPLEMENT

Problems 5, 9 and 10 also occur in this module’s Model Exam.

1. You are pulling someone on a sled across a horizontal field. If you are
exerting a force of 50 pounds directed 30◦ above the horizontal, what
are the horizontal and vertical components of this force?

2. Three people pull on ropes attached to
a single point on a trunk as shown in
the figure. The ropes are in the same
vertical xy-plane. The forces are: F1 =
10 lb at an angle of 30◦ with the x-axis;
F2 = 25 lb, upward; and F3 = 30 lb at an
angle of 220◦ with the x-axis. Find the
x-component of the resultant force; the
y-component of the resultant force; the
magnitude and direction of the resultant
force.

y

x

F
`

3

F
`

1F
`

2

3. A Titan rocket booster (with payload) weighs
250,000 lb. The engines produce a total thrust
of 400,000 lb. Due to air resistance there is
a force of 10,000 lb acting at a 15◦ angle (as
shown). If the angle of the thrust, from the
horizontal (the dotted line in the sketch), is
φ = 85◦, find the resultant force on the rocket.
(Data from NASA).

15°

f

W
`

T
`

F
`
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4. A patient needs cervical traction to set a
jaw fracture. The desired upward force is
6 lb. What weight is needed to produce
this? Treat this problem as if all forces act
at one point. Ignore the net horizontal force
of the device. ? lb

45°

5. As the Quadriceps tendon is stretched over the patella (knee cap), it
makes angles of 39 and 79 degrees with the horizontal. The tension in
the tendon is 250 lb. Find the force exerted by the bones on the patella
(Fc). (Data from the Michigan State University Dept. of Biomechan-
ics).

39°

79°

q

patella

T

T

Fc

39°

79°

6. A coupling for a “semi” truck-trailer is shown in the sketch. The forces
at B and C are directed along (cos 45◦x̂+ sin 45◦ẑ) and are 500 lb in
magnitude. The force at D is directed along (cos 30◦x̂ + sin 30◦ŷ)
and is 750 lb. in magnitude. Find the resultant force on the coupling,
due to these three forces, and the resultant torque about the origin

15
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on it.

z

x

y

2 in

2 in
3 in

4 in

4 in O D

B

C

A

7. The beam and weight in the figure are supported
by a cord that makes an angle of 60◦ with the wall.
What torque does the cord produce on the beam
about the point O if the tension in the cord is 100N
and the beam is 1.5meters long? O

60°

8. In the sketch, a uniform horizontal bar 10 ft long, weighing
5 lb, is hinged about a horizontal axis at O and is acted on
by three additional forces. All forces are in the vertical plane.
Find the total torque tending to rotate the bar about O.
Assume the weight vector of the beam to act at its center.

16
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45|

5 ft

7.5 ft

3 lb

4 lb

O

y

x

10 lb

9. A 1.0 × 102 lb crate rests on an inclined plane which
makes an angle of 20.0◦ with the horizontal. What are
the components of the weight parallel and perpendic-
ular to the incline?

20°
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10. The Queen Elizabeth is being maneu-
vered into her berth in Los Angeles.
Each of the four ocean-going tugs as-
sisting her exerts a force of 5.0×104 lb.
Find the resultant torque about the
point O. (Data from C. Lyman, Naval
Architect, South Bristol, Maine).

90 ft

100 ft

200 ft

100 ft

1

2

3

4

50 ft

70 ft

60°

45°

3

4

110 ft

100 ft

O

Brief Answers:

1. horizontal component = (50 lb)(cos 30◦) = 43.3 lb
vertical component = (50 lb)(sin 30◦) = 25 lb.

30°

v

h

2. ~F1 = 10 lb(cos 30◦x̂+ sin 30◦ŷ)
~F2 = 25 lb(ŷ)
~F3 = 30 lb(cos 220◦x̂+ sin 220◦ŷ)
∑

~F = (−14.3x̂+ 10.7ŷ) lb, | ~F | = 17.9 lb; θ = 143.2◦

3. ~T = 400, 000 lbŷ
~W = 250, 000 lb [cos(180◦ + φ)x̂+ sin(265◦)ŷ]
~F = 10, 000 lb [cos(270◦ + 15◦)x̂+ sin(285◦)ŷ]
~T + ~W + ~F = (−1.92× 104 lb)x̂+ (1.41× 105 lb)ŷ

|~T + ~W + ~F | = 1.42× 105 lb

18
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15°
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T
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F
`

OR:

f
W
`

T
`

y

horizontal

x

F
`

~T = (400, 000 lb) [cos(180◦ − φ) x̂+ sin(95◦) ŷ]
~F = (10, 000 lb) [cos(275◦ + 15◦) x̂+ sin(290◦) ŷ]
~W = (250, 000 lb)(−ŷ)
~T + ~F + ~W = (−3.14× 104x̂+ 39× 105ŷ) lb

|~T + ~F + ~W | = 1.42× 105 lb

4. 6 lb = T (2 + cos 45◦)
T = 2.22 lb =W

T T

T

5. ~T1 = (250 lb) [cos(141◦)x̂+ sin(141◦)ŷ]

~T2 = (250 lb) [cos(−79◦)x̂+ sin(−79◦)ŷ]

19
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~T1 + ~T2 + ~Fc = 0

~Fc = −(~T1 + ~T2) = (146.6x̂+ 88.1ŷ) lb

6. ~FB = (500 lb) [cos(45◦)x̂+ sin(45◦)ẑ]

~FC = ~FB

~FD = (750 lb) [cos(30◦)x̂+ sin(30◦)]ŷ
∑

~F = ~FB + ~FC + ~FD = 1357 lbx̂+ 375 lbŷ + 707 lbẑ

~rB = 3 inx̂+ 4 inŷ + 2 inẑ

~rC = 3 inx̂+ 4 inŷ − 2 inẑ

~rD = 4 inx̂

~τB = ~rB × ~FB =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

3 4 2
353.6 0 353.6

∣

∣

∣

∣

∣

∣

in lb

= [(1414)x̂+ (−353.6)ŷ + (−1414)ẑ] in lb

~τC = ~rC × ~FC =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

3 4 −2
353.6 0 353.6

∣

∣

∣

∣

∣

∣

in lb

= [(1414)x̂+ (−1768)ŷ + (−1414)ẑ] in lb

~τD = 4 inx̂× (750 lb)(sin 30◦ŷ) = (1500 in lb)ẑ
∑

~τ = (2828 in lb)x̂+ (−2121 in lb)ŷ + (−1328 in lb)ẑ

7. ~τ = ~r × ~F

= (1.5m)x̂× (100N)[cos(150◦)x̂+ sin(150◦)ŷ]

= (75Nm)ẑ (out of page)

8.
∑

~τ = rAFAẑ + rW3
W3ẑ + rTT sin(45◦)ẑ +

(

`

2

)

(WB)ẑ

= (−10 ft)(−4 lb)ẑ + (−7.5 ft)(−3 lb) ẑ

+ (−5 ft)(10 lb)(sin 45◦)ẑ + (−5 ft)(−5 lb)ẑ

= 52 ft lbẑ

9. 93.97 lb perpendicular and 34.20 lb parallel

10. −1.01× 107 ft lbẑ

20
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SPECIAL ASSISTANCE SUPPLEMENT
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1. A Look Back at Understanding Force

1a. Statement and example. A force is a push or pull which alone
would cause an object to accelerate. For instance, if when you push on
a closed but unfastened, door expect it to acquire a velocity. Your push
remains a force even if the door is latched and so does not move.
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100 pounds

F x̂x

30°

10°

F ŷy

crate

horizontal

Figure 14. Resolution of the force acting on the crate into
components.

1b. Properties. Force is a vector quantity and hence is not speci-
fied unless we know both its magnitude and direction. An arrow over a
letter, such as ~F , is the symbol for a vector. In the same context, the
letter standing alone, F , or the vector symbol confined in bars | ~F |, rep-

resents the magnitude of the vector ~F . An arrow is used to represent a
force graphically. Forces may be added vectorially and/or resolved into
components. The resultant of several given forces has components which
are exactly equal to the sum of the components of the original forces.
Common units of force are newtons (N) and pounds (lb).

1c. Example 1. Determine which of these statements completely
specifies a force:

a. ~F (on a diagram)

b. F (on a diagram)

c. 10 pounds acting vertically upward

d. 10 pounds acting horizontally

e. magnitude and direction

Answers: a, c and e

1d. Example 2. A crate is being pulled up a ramp which makes
an angle of 10.0◦ with the horizontal. If the force acting is 1.00 × 102

pounds directed 30◦ above the ramp, what are the components of this
force parallel to the ramp and perpendicular to the ramp?

Solution: First construct a drawing (see Fig. 14), to be sure that we un-
derstand the problem. To use regular x,y components, superimpose an
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Figure 15. Force vectors to be added.

x,y coordinate system such that the origin is at the point of application
of the force, the x-axis is directed up the ramp, and the y-axis is perpen-
dicular to the ramp. The component parallel to the ramp is Fxx̂ and the
component perpendicular to the ramp is Fy ŷ.

Using the right triangles formed, we can write:

Fx = (100. lb) cos 30◦ = 86.6 lb, Fy = (100 lb) sin 30◦ = 50.0 lb,

where Fx and Fy are the magnitudes of the components.

The vector components are:

Fxx̂ = 86.8x̂ pounds (directed up the ramp in the positive x-direction);

Fy ŷ = 50.0ŷ pounds (directed perpendicular to the ramp in the positive
y-direction).

Three significant figures are kept because the values given in the problem
had three significant figures.

1e. Example 3. Add the three forces shown in Fig. 15 by using vector
components. Express your final answer by giving the magnitude and
direction of the resultant. Let: F1 = 1.00 × 102 N, F2 = 8.0 × 101 N,
F3 = 8.0× 101 N.
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First, recall the properties of vector addition using vector components.
The resultant will be determined by equations

∑

F =
(

∑

F 2
x +

∑

F 2
y

)1/2

,

tan θ =

∑

Fy
∑

Fx
,

(1)

where
∑

Fx = F1x + F2x + F3x ,
∑

Fy = F1y + F2y + F3y .
(2)

Therefore, we begin by finding the components of the given forces and
then add these to find the components of the resultant.

F1x = F cos 30◦ = (100N)(0.866) = 86.6N

F1y = F1 sin 30
◦ = (100N)(0.500) = 50.0N

F2x = −F2 cos 45
◦ = −(80N)(0.707) = −57N

(3)

F2y = F2 sin 45
◦ = (80N)(0.707) = 57N

F3x = −F3 cos 45
◦ = −(80N)(0.707) = −57N

F3y = −F3 sin 45
◦ = −(80N)(0.707) = −57N

The negative sign indicate that these particular components are in either
the negative x or negative y directions.

Hence, for example, F2xx̂ = −57Nx̂ = 57N (−x̂) means a 57 newton
force in the negative x-direction. Now, if we add the x-components alge-
braically, we get

∑

Fx = (86.6− 57− 57)N = −27.4N .

Similarly
∑

Fy = 50N .

Note that the Eqs. (2) written in symbolic form have all positive signs.

It is only when we substitute in numbers that we introduce the negative
signs to indicate the negative direction [Eqs. (3)].

Figure 16 shows these components and their resultant,
∑

~F .
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(50N) ŷ

-(27N) x̂
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x

Figure 16. The compo-
nents and resultant of the
forces shown in Fig. 15.

W
`

Figure 17. Force
diagram for a three
hinged door.

Using Eqs. (1),

∣

∣

∣

∑

~f
∣

∣

∣
=
[

(−27.4)2 + (50)2
]1/2

N

= 57N ,

and

tan θ =
50N

27.4N
;

θ = tan−1

(

50N

27.4N

)

= 61 .

Hence
∑

~F is 57N directed 61◦ above the negative x-axis.

We have retained only two significant figures in the resultant because the
data had only two significant figures in most cases.

2. Understanding a Force Diagram

2a. Statement and Example. A force diagram is a drawing showing
an isolated object and all forces acting on it. For example, an ordinary
door which is hung by three hinges has four forces acting on it. The force
diagram is shown in Fig. 17. Note that the forces exerted by the hinges
are represented by wavy arrows with round tips to indicate unknown
magnitudes and directions.
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30°

Figure 18.
Child on a
Swing.

W
`

cF
`

s

Figure
19.
Force
diagram
for the
child.

2b. Applicability. In studying a force system for the possible de-
termination of some unknown forces, we begin by constructing a force
diagram. Actual calculations of unknown forces are carried out in Sect. 3,
the next section.

2c. Problem Example. A child of known weight is swinging on a
swing which consists of a swing board supported by two ropes. A side view
is shown in Fig. 18 where the two ropes are treated as one for consideration
of motion in the plane of the swinging.

When the swing is located at 30◦, draw two force diagrams, one for the
child and one for the seat of the swing.

Assume that the ropes are straight and that they do not exert any force
directly on the child. Under the conditions given, the child experiences
only two forces: weight, ~Wc, and the force exerted by the seat, ~Fs. The
weight has a known magnitude and direction while the seat force has
unknown direction and magnitude. Figure 19 shows the force diagram for
the child.

For the swing seat there are three forces acting: the force exerted by
the child, ~Fc, the force exerted by the ropes, Fr, and the weight of the
seat, ~Ws. The forces, ~Fr and ~Ws have known directions. ~Fc has unknown
magnitude and direction. Figure 20 shows the force diagram for the swing
seat.

The forces ~Fs and ~Fc discussed above are action-reaction forces between
the child and the seat. Recall that a single isolated force cannot exist:
every force must have a partner that has the same magnitude but is in
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Figure 20. Force diagram for the seat.

the opposite direction. This application of Newton’s third law of motion
tells us that: ~Fs = −~Fc.

/AsSect

3. Understanding Equilibrium

3a. Statement and Example. The only condition necessary for
the static equilibrium of a point acted upon by forces or for the static
equilibrium of an extended, rigid object acted upon by concurrent forces
is that the vector sum of the forces on the object is zero. (There will
be no need to use rotational considerations in the cases included in this
section.)

For example, a picture with a cord attached near each side is hung by
catching the cord over a nail on the wall (see Fig. 21). The nail is in
equilibrium. The picture is an extended object which is in equilibrium
under the action of concurrent forces. These forces are not acting at a
point but have lines of action that intersect at a common point, the nail.

3b. Interpretation. Figure 21 shows a view from behind the picture.
There are three concurrent forces acting on the picture: two of the forces
are exerted by the cord and the third by the weight. (Any reaction of the
wall directly on the picture itself has been neglected.)

The force diagram showing the concurrent forces is presented in Fig. 22.
The vector equilibrium equation is:

~FA + ~FB + ~W = 0 . (4)

3c. Problem Solution. The algebraic equations which we would use
to solve for the unknown magnitudes of ~Fa and ~Fb, given the weight of
the picture, W = 10pounds, are components of Eq. (4),

x-dir: Fa cos 50
◦ − Fb cos 50

◦ = 0,

y-dir: Fa sin 50
◦ + Fb sin 50

◦ − 10 lb = 0 .
(5)
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Figure 21. A
hanging picture.

W
`

F
`

bF
`

a

Figure 22.
Force diagram
for picture.

(Remember that when putting the selected information from the force
diagram into the component equations we use negative signs to indicate
negative x− or y-directions.) From the first of Eqs. (5), Fa = Fb and
using this in the second equation yields

Fa sin 50
◦ + Fa sin 50

◦ − 10 lb = 0 ,

or

Fa =
10 lb

2 sin 50◦
= 6.5 lb .

Since Fa = Fb, we get: Fb = 6.5 pounds.

4. Understanding Torque

4a. Statement and Example. Torque is defined as the cross product
of two vectors, ~r× ~F . As an example consider exerting a 500 newton force
on a flag pole as shown in Fig. 23. The torque about the base of the pole
produced by this force has a magnitude

τ = rF sin θ .

A diagram showing the force ~F and the position vector ~r is given in Fig. 24.
The magnitude of ~F is 500 newtons and the magnitude of ~r is3.0meters.
Then the magnitude of the torque is

τ = (3.0m)(500N) sin 120◦

= (3.0m)(500N)(0.866)

= 1.3× 103 Nm .
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F
`3.0 m

30°

Figure 23. Flagpole with force acting.

4b. Properties. Torque is a vector quantity with units of newton-
meter or pound-feet. The common symbol is the Greek letter τ . The
direction of ~τ is determined by the right-hand rule. For example, in
Figs. 23 and 24 the torque vector is directed into the page but this actually
means a tendency to rotate clockwise. (A torque directed into the page
does not mean that the flagpole tends to turn into the page.)

4c. Interpretation. The position vector, ~r, runs from the reference
point O to any point on the line of action of the force (not necessarily
to the point of application of the force). The magnitude of ~τ is rF sin θ,
where r is the magnitude of the position vector, F is the magnitude of the
force, and θ is the angle between the vectors ~F and ~r. When the directions
of ~r and ~F are fixed (θ = constant) the magnitude of the torque is directly
proportional to r and F . (These are magnitudes.)

For example if ~F is constant but is moved twice as far from the reference
point O as it was originally, the torque will double. Or if ~r is constant
and the force is doubled, the torque will double. The magnitude of the
torque can also be written as τ = hF , where h(= r sin θ) is the lever arm,

or as τ = rF⊥, where F⊥ is the component of ~F perpendicular to ~r. The
lever arm is the perpendicular distance from the reference point O to the
line of action of the force. Hence another view of torque is that for a given
force the torque is directly proportional to the lever arm.

4d. Comparison. Force and torque are both vector quantities. For a
system of forces acting on the body, the resultant force tells if the body
has a translational acceleration while the resultant torque tells if the body
has a rotational acceleration.4

4See “Non-Concurrent Forces; Centers of Force, Gravity, Mass” MISN-0-6.
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Figure 24. Di-
agram of force
and position vec-
tor.

W
`

O

2.0 ft.

Figure 25. Lower leg,
foot, and deLorme boot
with weight.

4e. Problem Example. You have just torn the cartilage in your
knee as the result of a skiing accident. What is in store for you? You
may have surgery to remove the cartilage and then as soon as possible
begin exercises to restore your leg to full strength and normal functioning.
The exercise can be done by using a DeLorme boot and weights. In
Fig. 25 assume the total weight, W of the boot assembly to be 40 pounds.
Calculate the torque produced by the weight about your knee (reference
point O) when

a. your foot hangs straight down,

b. your foot is raised to the point where your lower leg makes a 45◦ angle
with the horizontal and

c. your lower leg is extended horizontally.

We are only concerned with the weight W and reference point O located
2.0 feet away. Figure 26 shows the three cases in question.

To calculate torque, we begin by looking at the definition of torque,

~τ = ~r × ~F .

Part a. Foot hangs straight down (Fig. 26a):

~τ1 = ~r1 × ~W .
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Figure 26. Force diagram, three leg positions.

The magnitude of ~τ1 is τ1 = r1W sin θ. But in this case, ~r1 and ~W have
the same direction and hence the angle between then is zero degrees. The
result is τ1 = 0, because the sin 0◦ = 0.

Part b. Raised 45◦ (Fig. 26b):

~τ2 = ~r2 × ~W ,

with magnitude

τ2 = r2W sin θ2 = (2.0 ft)(40 lb) sin 45◦ = (2.0)(40)(0.707) ft lb = 57 ft lb .

The direction of ~τ2 is into the page (use the right-hand rule).

Part c. Horizontal (Fig. 26c):

~τ3 = ~r3 × ~W ,

with magnitude

τ3 = r3W sin θ3 = (2.0 ft)(40 lb) sin 90◦ = 80 ft lb .

The direction of τ3 is also into the page.

The implications of this for determining muscle strength can be considered
following a discussion of rotational equilibrium.5

5See “Static Equilibrium, Centers of Force, Gravity and Mass” (MISN-0-6).
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S-1 (from TX-2d)

Analyze the forces exerted on the pulley attached to the bottom of
the foot: they should add to zero so the foot doesn’t accelerate off
somewhere (that would be quite a surprise to the patient!).
The tensions in the rope are just W , the Weight’s weight.
The force exerted by the leg on the pulley is 22 pounds, in some unknown
direction below the horizontal (we can designate it by some symbol).
Thus there are forces acting in three directions on the pulley. They
should add to zero for static equilibrium. Note that static equilibrium
will occur unless the leg is pulled off the patient: what we are solving
for is static equilibrium with the angles and leg-force desired.
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MODEL EXAM

1. See Output Skills K1-K2 in this module’s ID Sheet.

2.

20°

A 1.0×102 pound crate rests on an inclined plane that makes an angle
of 20.0◦ with the horizontal. What are the components of the weight
parallel and perpendicular to the incline?

3. As the Quadriceps tendon is stretched over the patella (knee cap), it
makes angles of 39 and 79 degrees with the horizontal. The tension
in the tendon is 250 lb. Find the force exerted by the bones on the
patella (Fc). (Data from the Michigan State University Dept. of
Biomechanics).

q

patella

T

T

Fc

39°

79°
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4.

90 ft

100 ft

200 ft

100 ft

1

2

3

4

50 ft

70 ft

60°

45°

3

4

110 ft

100 ft

O

The Queen Elizabeth is being maneuvered into her berth in Los An-
geles. Each of the four ocean-going tugs assisting her exerts a force of
5.0× 104 lb. Find the resultant torque about the point O. (Data from
C. Lyman, Naval Architect, South Bristol, Maine).

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 9.

3. See this module’s Problem Supplement, problem 5.

4. See this module’s Problem Supplement, problem 10.
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