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SIMPLE DIFFERENTIATION

AND INTEGRATION

by

J. S.Kovacs, Michigan State University

1. Introduction

The description of physical phenomena without the results of mea-
surements and without mathematics is, at best, incomplete and very lim-
ited in its scope. For example, the observation that the moon orbits the
earth is a qualitative description of that motion. The description becomes
quantitative when measurements are made that give the position of the
moon relative to the earth for various times. With the accumulation of
such data, the description begins to enter the realm of science when, on
the basis of these data, the location of the moon can be predicted for
times in the future. However, the description achieves full scientific sta-
tus when it can also be arrived at from a basic principle or physical law
which not only fully predicts all aspects of the observed motion of the
moon around the earth, but also can be applied to problems of the mo-
tion of other objects in other environments. Relating various observations
through physical laws invariably involves the use of mathematics. In this
module, we will consider some of the basic mathematical skills necessary
for understanding such applications.

The functions whose derivatives are dealt with here constitute most
of the kinds of functions encountered in an introductory physics course.
For ready reference, we tabulate the rules and frequently used derivatives
in Appendix B.

2. Differentiating Common Functions

2a. Definition of the Derivative. The derivative of a function of
a single independent variable, y(x), with respect to that independent
variable, x, is defined as:

dy(x)

dx
= lim
∆x→0

y(x+∆x)− y(x)

∆x
(1)

where ∆x is a small incremental change in the value of x that is required
to go to zero as the prescribed ratio is examined.

5

MISN-0-1 2

As an example, consider where a is a constant. This relationship
defines a value for y for each value of x except at x = 0. The derivative
of this function is:

dy(x)

dx
=

d

dx

(a

x

)

= lim
∆x→0

a

x+∆x
− a

x
∆x

= lim
∆x→0

−a
x(x+∆x)

∆x

∆x

= − a

x2
.

This function defines a value of the derivative of y for each value of x
except at x = 0.

2b. Derivatives of Simple Algebraic Functions. It is not necessary
to go through the cumbersome limiting procedure each time a derivative
of a function needs to be determined. Instead, some general rules can be
used. For example, if the function is some power of x, y(x) = axp, where
p is any positive or negative number, then:

dy(x)

dx
= lim
∆x→0

a(x+∆x)p − axp

∆x

becomes, after applying the binomial theorem and the limiting procedure,
Help: [S-2]1

d(axp)

dx
= paxp−1. (2)

Equation (2) can be applied any time the derivative of any power of the
independent variable is desired. Because the derivative of a sum of terms
is the sum of the derivatives of the terms, the above result can be used to
produce the derivative of any polynomial.2 For example, if

y(t) = y0 + v0t−
gt2

2
1The [S-2] means that, if you need help, turn to the Special Assistance Supplement

at the end of this module and look at Sequence [S-2].
2A polynomial is a sum of integer powers of the independent variable with constant

coefficients. A polynomial of degree n in general is written as:

y(x) = a0xn + a1xn−1 + . . .+ an−1x+ an. (a0 6= 0)

6
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where y0, v0 and g are constants, and t is the independent variable, then
Eq. (2) produces:

dy(t)

dt
= v0 − gt.

2c. Second Derivatives. The derivative of dy(t)/dt, called the second
derivative of y(t), is written:

d2y(t)

dt2
.

For example, for the function y(t) = y0 + v0t− gt2/2, double application
of rule (2) produces:

d

dt

(

dy(t)

dt

)

= −g.

This y(t) is a polynomial of degree two, its first derivative is a polynomial
of degree one and its second derivative is a polynomial of degree zero (just
a constant).

2d. Derivative of a Product. The derivatives of more complicated
algebraic functions, such as the products or ratios of polynomials, can
also be readily found with the aid of some basic rules. Consider a func-
tion which can be written as the product (gf) of two functions of the
same independent variable; g(x) and f(x). The derivative of this function,
according to the definition, is:

d(gf)

dx
= lim
∆x→0

g(x+∆x)f(x+∆x)− g(x)f(x)

∆x
.

If g(x)f(x+∆x) is added and subtracted in the numerator, the expression
may be rewritten in this way:

d(gf)

dx
= lim
∆x→0

(g(x)h1(x) + h2(x)f(x+∆x)) ,

where

h1(x) ≡
f(x+∆x)− f(x)

∆x

and

h2(x) ≡
g(x+∆x)− g(x)

∆x
.
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In the limit that ∆x goes to zero, the two quantities h1(x) and h2(x) go to
the derivatives of the respective functions while the f(x+∆x) multiplying
h2(x) goes simply to f(x). Thus:

d(gf)

dx
=

(

dg

dx

)

f + g

(

df

dx

)

. (3)

Similarly:

d

dx

(

g

f

)

=

(

dg

dx

)

f − g

(

df

dx

)

f2
. (4)

These rules enable us to find the derivative of rational algebraic functions
(polynomials or ratios of polynomials), but not of irrational algebraic
functions (such as square roots of polynomials).

2e. The Chain Rule. To enable us to find the derivative of an irra-
tional algebraic function, we need to use the “chain rule.”

We are given f as a function of x and we suppose we can find its
derivative,

df

dx
. (5)

Now suppose that x itself is a function of t so that f is also a function of
t. Then the chain rule says that the derivative of f(x) with respect to t
is:

df(x(t))

dt
=

(

df

dx

)(

dx

dt

)

. (6)

Using this, the derivative of a function such as

F (x) = (ax2 + bx+ c)1/2,

where a, b, and c are constants, can readily be shown to be: Help: [S-4]

dF (x)

dx
=

2ax+ b

2(ax2 + bx+ c)1/2
. (7)

2f. Derivatives of Trigonometric Functions. We can evaluate the
derivatives of transcendental functions, such as sinx, which cannot be
expressed as rational or irrational algebraic functions, using rules de-
veloped from the definition of the derivative. Consider the function
y(x) = sin(kx+ δ) where k and δ are constants. The derivative of y(x) is:

dy(x)

dx
= lim
∆x→0

sin(kx+ k∆x+ δ)− sin(kx+ δ)

∆x
.
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Using a trigonometric identity,3

sinA− sinB = 2 sin

(

A−B

2

)

cos

(

A+B

2

)

,

and the limit

lim
θ→0

sinθ

θ
= 1,

we find that: Help: [S-3]

d

dx
[sin(kx+ δ)] = k cos(kx+ δ). (8)

The derivative of cos(kx + δ) can be obtained directly from the above
result using the relations

cos(kx+ δ) = − sin
(

kx+ δ +
π

2

)

and
cos

(

kx+ δ − π

2

)

= sin(kx+ δ), (9)

yielding:
d

dx
cos(kx+ δ) = −k sin(kx+ δ). (10)

The derivatives of other trigonometric functions may be obtained from the
above results and the appropriate trigonometric identities. For example,
the derivative of tan θ with respect to θ is:

d

dθ
tan θ =

d

dθ

(

sin θ

cos θ

)

=
1

cos2 θ
= sec2 θ. (11)

Similarly, the derivatives of the inverse trigonometric functions, such as
θ = arctanx (also written as tan−1 x, which means θ is the angle whose
tangent is x) can also be obtained from the above results using the rule:

dy(x)

dx
=

1

dx(y)

dy

;

(

dx

dy
6= 0

)

. (12)

Frequently used derivatives of trigonometric functions are listed in Ap-
pendix B. /par

3See Handbook of Chemistry and Physics, Chemical Rubber Publishing Co. The
identity can be proved by recalling the expansion for sin(x± y) and using the substi-
tutions A = x+ y and B = x− y.
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2g. Derivatives of Exponentials and Logarithms. None of our
rules, developed from algebraic and trigonometric functions, apply to ex-
ponential and logarithmic functions, so here it’s necessary to begin again
with the definition of the derivative. If x = loga F , then the derivative of
x with respect to F is:

dx

dF
=

d

dF
(loga F )

= lim
∆F→0

loga(F +∆F )− loga(F )

∆F

= lim
∆F→0

loga

(

1 +
∆F

F

)

∆F

= lim
∆F→0

∆F

F
loga

[

(

1 +
∆F

F

)F/∆F
]

∆F

Here we have used property (3) of logarithms (see Appendix A). What is
the limit of the argument of this logarithm?4 That is, what is:

y = lim
x→0

(1 + x)1/x?

This limit has a definite value, as can be seen by evaluating it and plotting
it for a few values of x on both sides of zero. The value of the limit
is the transcendental number e, which to 9 decimal places is

e = 2.718281828 . . .

As we shall see, e’s actual value is often of no real interest in physical
problems, but it enters in a natural way as the exponential base appro-
priate to the mathematical description of many different kinds of physical
phenomena. /par

Completing the development of the derivative of the logarithm, we
get

d (loga F )

dF
=

loga e

F
(13)

If we choose the base a = e, then the constant loga e becomes 1 (see
property (4) of logarithms, Appendix A). Because this makes life simpler,

4The limit of the logarithm of a function is the same as the logarithm of the limit
of the same function.
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4

3
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1

-2 -1 1 2 3 4 5 60

the limit as x ` 0

y

x

Figure 1. A graph of (1 + x)1/x in the vicinity of x = 0.

we will restrict the remainder of our review of derivatives of logarithms
and exponentials to that base. Furthermore, we write “loge” as simply
“`n.” Thus, for a variable F , the derivative of “logF to the base e,” `nF ,
is:

d(`nF )

dF
=

1

F
. (14)

We can obtain the derivative of ex with respect to x from the reciprocal
relation between the derivatives when the roles of the dependent and
independent variables are interchanged [See Eq. (11)]. We use

x(F ) = `nF

F (x) = ex

dx(F )

dF
=

1

dF (x)/dx

to get:
d

dx
(ex) = F = ex. (15)

Thus the exponential (to the base e) is its own derivative! Finally, using
the chain rule, it can be shown that:

d

dx
(emx) = memx. (16)

11
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F(x )1

F(x) = Ax + B

x1
xF = 0,

x = 0

P

B

F(x)

Figure 2. The graph of
F (x) = Ax+ b.

3. Derivatives as Graphical Slopes

3a. Graph of An Equation. The functional relationship between
two variables, often expressed in the form of an equation, may also be
displayed on a graph. The graphical representation has distinct visual
advantages, presenting all of the properties of the function in one picture.
All of the points that lie on the curve are points which satisfy the equation
connecting the variables.

As an example, consider the functional relationship between F and
x given by the equation

F (x) = Ax+B,

where A and B are constants. For every value of x there is one value
F (x) and for every value of F (x) there is one value of x. The points for
which this correspondence exists can be connected by a continuous curve.
This graph of the equation can be plotted on a rectangular coordinate
system in which F (x) and x are the perpendicular axes (See Fig. 2.). The
graph of this equation is a straight line, reflecting the linear relationship
between F and x. Given a value x = x1, the value of F (x) which satisfies
the equation can be obtained from the equation F (x1) = Ax1 + B or
can be determined from the graph [point P on the graph in Fig. 2 has
coordinates x1, F (x1)].

5

5On a two-dimensional rectangular plot it is customary to represent points by the
ordered pair of numbers [x, y] which are, respectively, the horizontal and vertical co-

12
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G(x)

q

P
graph of G(x)

tangent line to curve at P

x

Figure 3. The slope of a curve G(x), at some point P ,
equals the slope of the tangent to the curve at that point.

3b. Slope of a Straight Line. A property associated with equations
which is of importance in physical applications and which can most easily
be discussed with reference to the graph of the equation is the rate at
which one variable changes due to changes in the other. For a graph
which is a straight line, the rate is the same as the slope of the line
(the slope being the tangent of the angle that the line makes with the
horizontal axis). Referring to Fig. 2, if P1 and P2 are two points whose
coordinates are [x1, F (x1)] and [x2, F (x2)], then the rate at which F
changes between those two points relative to the corresponding change in
x is:

∆F

∆x
=

F (x2)− F (x1)

x2 − x1
.

Let ∆x = x2 − x1 so that F (x2) = F (x1 +∆x) and the slope of the line
may be written as:

slope ≡ F (x1 +∆x)− F (x1)

∆x
(straight line). (17)

For a straight line, the result of Eq. (17) is clearly the same no matter
what size we pick for ∆x. That will not be the case for curves that are
not straight lines.

3c. Slopes of Curves. If we take the limit of Eq. (17) as ∆x → 0,
this expression for the slope becomes the derivative of F with respect to

ordinates of the point.

13
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x, and we can define the slope at a single point on any curve as:

slope at point x1 ≡
dF (x)

dx

∣

∣

∣

∣

x=x1

. (18)

For a function whose graph is not a straight line, the slope does depend
upon the point at which it is evaluated. The slope in such cases is the
slope of the straight line that is tangent to the curve at the point in
question (see Fig. 3).

3d. Finding Maximum and Minimum Points. The collection of
all maximum and minimum points of a function can be found by finding
the points of zero slope (see Fig. 4). From the definition of slope [see
Eq. (18)] it is apparent that the slopes at P1 and P5 in Fig. 4 are positive.
However, the slope at P3, on the decreasing part of the curve, is negative.
At point P2, where the tangent to the curve is horizontal, the slope is
zero. Similarly, the slope is zero at P4. The two points, P2 and P4,
are, respectively, a “maximum point” and a “minimum point” of the
curve. At P2 all points on the curve in the immediate neighborhood of
P2 have y(x) less than the corresponding value at P2, while at P4 all
points in the neighborhood of P4 have y(x) greater than the value of
P4. This illustration indicates the method for determining the maximum
and minimum points of a function: Find the values of x which make the
derivative of the function equal to zero.

¤ Show that the locations of the maximum and minima of the function

y(x) = 5x3 − 2x2 − 3x+ 2.

are at: x = 3/5;x = −1/3. Help: [S-1] Show that the first is where y is
a minimum, the second where it is a maximum. Help: [S-1]

3e. Separating into Maxima and Minima. How do you determine
whether a point of zero slope is a maximum or a minimum? You could
plot a graph and examine it, or you could evaluate the second derivative
of the function at the point in question. Referring to Fig. 4, the slope
of the curve is positive to the left of P2, zero at P2, and negative to the
right of P2. Hence the slope is decreasing. The derivative of the slope,
the second derivative of the function y(x) itself, is therefore negative.
Thus the second derivative is negative at a maximum—this is because
the second derivative is the “bending function” and at a maximum it is
bending the function down, negatively. Correspondingly, at the location
of a minimum, the second derivative of the function, the “bending,” is
positive.

14



MISN-0-1 11

P1
P3

P
5

P2

P4

y(x)

x

Figure 4. For the curve shown, the slopes at P1 and P5 are
positive numbers while the slope at P3 is negative. At the
points P2 and P4, where the tangent line is horizontal, the
slope is zero.

¤ See for yourself that the function

y(x) = 2x3 − 3x2 + 4,

has a maximum at point (0,4) and a minimum at point (1,3).

4. Indefinite and Definite Integrals

4a. Indefinite Integrals. Knowing the derivative of a function with
respect to an independent variable, we often wish to determine the func-
tion itself. The inverse of the derivative is what is needed, and the pro-
cedure is called “integration.” The result of this procedure, the inverse
of the derivative, is called “the integral” of the function. For example,
because 2x is the derivative of x2 with respect to x, the integral of 2x
with respect to x is x2. However, x2 + 4 is also the integral of 2x, as is
x2 − 10. In fact, because the derivative eliminates any additive constant,
the integral of 2x is x2 + C, where C is an unknown constant. Because
of the presence of the indefinite constant, x2 +C is called the “indefinite
integral” of 2x. This process of reversing differentiation, the indefinite
integral, is customarily written in the form:

∫

df(x)

dx
dx = f(x) + C.

That is, the indefinite integral of the derivative of some function y(x) is
just the function itself plus a constant. In general, an indefinite integral

15
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is written as:
∫

y(x) dx

and it is up to the user to determine what function y(x) is a derivative of,
using either standard techniques or a symbolic computer program. The
function being integrated, y(x), is called “the integrand of the integral.”
Examples:

(i)
∫ (

4x2 + 7
)

dx =
4

3
x3 + 7x+ C

(ii)
∫

xn dx =
xn+1

n+ 1
+ C

(iii)
∫ dI(x)

dx
dx = I(x) + C for any I(x).

The last result, (iii), can be verified by taking the derivative with respect
to x of the right side of each equation, thereby producing the integrand
of the integral on the left. The integrals of other frequently encountered
functions, such as those appearing to the right of the equality sign for
entries in Appendix B, may be determined by identifying the integrands
as the derivative of sought-for answers as illustrated in (iii).

4b. Other Integration Techniques. Tables of integrals of functions
of many kinds are available and are the quickest technique for evaluating
the integrals (anti-derivatives) of whatever integrand may be at hand.6

There are also computer programs that can find the anti-derivative for
you.7

4c. The Definite Integral as a Change in Quantity. Another use
of the integral is to use a known rate of change of a quantity, given as
a function of time, to find the change in the total quantity between two
times. For example, we may know the electric current in a circuit as a
function of time and we wish to know how much charge accumulated on a
capacitor in the circuit over a certain time interval. We may know the flow
rate of a chemical in a pipe as a function of time and wish to know how

6For example, A Short Table of Integrals, Third Revised Edition, B.O. Pierce, Ginn
and Co. (1929). There is also a table of integrals included in the Handbook of Chem-

istry and Physics, Chemical Rubber Publishing Co., any edition.
7See Mathematica, S.Wolfram, Addison-Wesley Publ. Co. (1991), http://www.

wolfram.com, and Computing with MAPLE, Francis Wright, Chapman & Hall/CRC
(2001) http://www.maplesoft.com. There are some 400 books on MAPLE and at least
as many on MATHEMATICA.

16
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y(x+ x)D

y(x)

y(x )0

x=x0 x x+ xD

y

x

A

Figure 5. The definite integral of y(x) from x0 to x is the
area A that is under the curve and bounded by x0 and x.

much of the chemical was delivered by the pipe from one time to another.
We may know the speedometer reading of a vehicle as a function of time
and we wish to know how far the vehicle traveled between two times. In
all three cases we can say we have the rate of a quantity, say dQ(t)/dt, as
a function of time and we wish to find ∆Q ≡ Q(t2)−Q(t1), the change
in total Q from time t1 to time t2.

8 If the rate is constant then ∆Q is
just the rate times the time interval:

∆Q =
dQ(t)

dt
(t2 − t1) , (constant rate)

and the apparatus of integration is not needed. However, if the rate
is not constant then there is no single rate and one cannot take “rate
times time.” If the rate is, say, dQ/dt = at2 + bt3, then we can take
the anti-derivative and get the amount as a function of time: Q(t) =
(a/3)t3 + (b/4)t4 + C. The amount that Q changed from time t1 to
time t2 is then the amount at time t2 minus the amount at time t1:
Q(t2) − Q(t1) = (a/3)(t32 − t31) + (b/4)(t42 − t41). Note that the unknown
constant C is gone and the answer is definite. The result is called the
“definite integral” and is written with the two times as the “lower limit”
and the “upper limit” of the integral:

∆Q = Q(t2)−Q(t1) ≡
∫ t2

t1

dQ(t)

dt
dt .

8A change in any quantity is commonly written using the upper case Greek letter
∆.
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We call the example “the integral from t1 to t2 of (at2 + bt3)” and we
write it as:

∆Q =

∫ t2

t1

(at2 + bt3) dt .

We write the result of the integration this way:

∫ t2

t1

(at2 + bt3) dt =
∣

∣(a/3)t3 + (b/4)t4
∣

∣

t2

t1
,

where the vertical bars means that one is to evaluate the expression be-
tween them at the indicated upper limit minus the same expression eval-
uated at the indicated lower limit. In general,

|f(x)|ba ≡ f(b)− f(a) .

The first vertical bar is sometimes omitted if that causes no ambiguity.
Note that vertical bars without limits indicate “absolute value,” a totally
unrelated concept. Then for our example:

∫ t2

t1

(at2 + bt3) dt = (a/3)(t32 − t31) + (b/4)(t42 − t41) .

¤ Show that:
∫ 2 s

1 s

(4m/s4t3 + 5m/s5t4) dt = 46m .

4d. The Definite Integral as an Area. The definite integral of a
function between a lower and an upper limit equals the area under the
function’s curve between those two limits (see Fig. 5). For proof, consider
the graph of some function y(x) shown in Fig. 5. The area under the
curve, between the value x0 and some other value x, is the area A shown
in the figure. If x is increased by the incremental amount ∆x, the area
under the curve increases by some amount we label ∆A. This amount
∆A is greater than the area of the rectangle of area y(x)∆x (the smaller
dotted rectangle to the right of A) and less than the area of the larger
rectangle y(x+∆x)∆x. The incremental area may be written as:

∆A = y(x)∆x+ an amount less than [y(x+∆x)− y(x)]∆x.

Then:

∆A

∆x
= y(x) + an amount less than y(x+∆x)− y(x).

18
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y(x)

1

0 2 a 4 aa x

3a

Figure 6. Graph of a saw-tooth function illustrating that
the integral over the full cycle, 0 to 4a, is zero. The area
above the axis, from 0 to 2a, is equal to the area below axis,
from 2a to 4a.

In the limit as ∆x → 0, the second area on the right goes to zero while
the left side of the equation becomes dA/dx:

dA

dx
= y(x).

Integrating this expression, the area under any f(x) between any x1 and
x2 is:

A(x1, x2) =

∫ x2

x1

y(x) dx.

For parts of the curve that are below the x-axis, the area between the
curve and the x-axis is given a negative numerical value since the function
is negative there. Thus for the graph of the “saw-tooth” function y(x),
shown in Fig. 6 in the interval from x = 0 to x = 4a, there is just as much
area below the axis (negative area) as there is above the axis (positive
area), so they cancel and the integral from 0 to 4a is zero. In this interval
of x, the saw-tooth function has three straight lines: from x = 0 to x = a,
from x = a to x = 3a, and from x = 3a to x = 4a. We integrate each of
those lines and get the shaded area in Fig. 6:

∫ 4a

0

y(x) dx =

∫ a

0

x

a
dx+

∫ 3a

a

(

−x
a
+ 2

)

dx+

∫ 4a

3a

(x

a
− 4

)

dx

=
a

2
+ 0− a

2
= 0 .

(19)

¤ Show that each of the three linear functions in Eq. (19) does indeed
properly describe its portion of the saw-tooth function (an easy way is

19
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to plug in two different x values and show that each produces a y value
that is obviously on the corresponding line). Then show that integration
of each function gives the value shown.

There are many computer programs that can perform definite inte-
grals numerically.9
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A. Logarithms

The logarithm of a number F to the base a is the power to which a
must be raised to yield the number F :

if: F = ax

then: loga F = x .

For example, to the base a = 10, the logarithm of F = 100 is x =
log10 F = 2, while to the base a = 2, the logarithms of F = 1, 024
and F = 10 are x = log2 F = 10 and 3.32, respectively. The familiar
properties of logarithms, listed below, all follow from the definition.

If F = ax and G = ay, then FG = axay = ax+y, and

loga(FG) = x+ y = loga F + logaG. (20)

loga
F

G
= loga F − logaG (21)

loga F
n = n loga F (22)

loga a = 1 (23)

loga 1 = 0 (24)

Each of these can be proved using the definition of the logarithm. Another
useful property expresses the relationship between the logarithms of the
same number F in two different bases, a and b:

logb F = (loga F ) · (logb a). (25)

9See “Numerical Integration” (MISN-0-349).
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The inverse functional relationships,

x(F ) = loga F ; and F (x) = ax

define a value of x for each given value of F , and vice versa.

B. Frequently Used Derivatives

d

dx
(axn) = naxn−1 (26)

d

dx
[f(x)g(x)] = g(x)

df(x)

dx
+ f(x)

dg(x)

dx
(27)

d

dx

[

f(x)

g(x)

]

=
g(x)

df(x)

dx
− f(x)

dg(x)

dx
[g(x)]2

(28)

d

dt
[f(x)] =

df

dx
· dx
dt

(29)

df(x)

dx
=

[

dx(f)

df

]−1

(30)

Trigonometric

d

dθ
sin θ = cos θ (31)

d

dθ
sinmθ = m cosmθ (32)

d

dθ
cos θ = − sin θ (33)

d

dθ
tan θ = sec2 θ (34)

d

dθ
cot θ = − csc2 θ (35)

d

dθ
sec θ = sec θ tan θ (36)

d

dθ
csc θ = − csc θ cot θ (37)
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d

dθ
sin−1 x(θ) =

dx

dθ
(1− x2)1/2

(38)

d

dθ
cos−1 x(θ) =

−dx
dθ

(1− x2)1/2
(39)

d

dθ
tan−1 x(θ) =

dx

dθ
1 + x2

(40)

Logarithmic

d

dx
loga U(x) =

[

1

U(x)

]

[loga e]

[

dU(x)

dx

]

(41)

d

dx
`nx =

1

x
(42)

d

dx
(ax) = axlogea (43)

d

dx

(

ey(x)
)

= ey(x)
(

dy(x)

dx

)

(44)
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PROBLEM SUPPLEMENT

Note: Problems 16-19 are used in this module’s Model Exam.

1. Starting from the definition of the derivative, derive the expression
for the derivative of y = axn, Text Eq. (26).

2. Again working directly from the definition, find the expression which
gives the derivative of f(x)/g(x) in terms of the derivatives of f(x)
and g(x), Text Eq. (28).

3. Use the chain rule, Text Eq. (29), to determine the derivative of
F (x) = (ax2 + bx+ c)1/2.

4. Show that the derivative with respect to θ of tan θ is sec2 θ, given the
derivatives of the sine and cosine.

5. Given the derivative of `n x, Text Eq. (42), determine the expression
for the derivative of ex, simplified Text Eq. (44).

6. Evaluate the derivative of (x2 + 7x+ 2)/(x+ 2) at x = 1.

7. Evaluate the derivative of e5x(x2 + 5x− 7) at x = 0.2.

8. Show that the derivative of − csc(4θ−1) is 4[csc(4θ−1)][cot(4θ−1)],
given the derivatives of sine and cosine.

9. Show that the slope of the function y(x) = 2x3 − 3x2 + 4 at x = −1
is +12.

10. For the function in problem 9, show that the slope at x = 1/3 is −4/3.

11. For the function in problem 9, show that the locations of the maximum
and minimum are, respectively, (0,4) and (1,3). With the aid of these
results, sketch a graph of the function.

12. Referring to Appendix B, show that the integral

∫ [

Y (x)
dZ(x)

dx
+ Z(x)

dY (x)

dx

]

dx

is: Y (x)Z(x) + C.
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13. Evaluate the integral of 6x2 − 2 and show that, if at x = 2 the inte-
gral is to have the value 10, then the integral’s arbitrary constant is
determined and the integral is 2(x3 − x− 1).

14. Evaluate this definite integral:
∫ +2

−2
(5x2 + x) dx .

15. A function y(x) has these properties:

(i) it is zero for all values of x up to x = 5, at which point it has
the value y = 10.

(ii) from x = 5 to x = 20 the function falls linearly (as a straight
line) to zero, after which it is zero for all higher values of x.

Sketch the function and evaluate its integral in the interval x = 0
to x = 50. (Hint: Make use of the geometrical interpretation of the
integral.)

16. Verify that f(t) = A cosωt + B sinωt (where A and B are constant
and ω2 = k/m) is a solution of

m
d2f(t)

dt2
+ kf(t) = 0 ,

where d2f(t)/dt2 is the second derivative of f(t) and k and m are
constants.

17. Evaluate the derivative of (A cos 5y) at y = π/20.

18. Evaluate this integral:
∫

x1/2 dx .

19. For each of the equations below, find the maximum and/or minimum
points and distinguish between them.

a. y(x) = x2 + x+ 10.

b. y(x) = x3 − 3x+ 2.

c. Determine A, B and C so the function y(x) = Ax3+Bx2+C will
have a minimum at x = 1/3.

Brief Answers:

3.
ax+ b/2

(ax2 + bx+ c)1/2
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6. 17/9

7. -66.33

14. 80/3

15. 75

17. −5A/
√
2

18. (2/3)x3/2 + C .

19. a.

(

−1

2
,
39

4

)

, minimum

b. (−1, 4), maximum; (1, 0), minimum
c. as long as A = −2B, the constants can be anything. Help: [S-5]
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-3d)

Find the locations of the maximum and minima of the function:

y(x) = 5x3 − 2x2 − 3x+ 2.

First, find dy/dx and set it equal to zero:

dy

dx
= 15x2 − 4x− 3 = 0

or
(5x− 3)(3x+ 1) = 0.

Solving for the zeros, maxima or minima of the original function occur
at: x = 3/5;x = −1/3. The corresponding values of y are found by
inserting those x values into the original equation, e.g. at x = 3/5:

y = 5

(

3

5

)3

− 2

(

3

5

)2

− 3

(

3

5

)

+ 2 =
14

25
,

while at x = −1/3, y = 70/27. To find whether these points are maxima
or minima, calculate the second derivative:

d2y

dx2
= 30x− 4,

so at x = 3/5,

30

(

3

5

)

− 4 = 14 > 0.

Thus a minimum occurs at (3/5, 14/25). At x = −1/3:

30

(

−1

3

)

− 4 = −14 < 0

so a maximum occurs at (−1/3, 70/27).
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S-2 (from TX-2b)

The binomial theorem states that

(c+ d)p = cp + pcp−1d+
p(p− 1)

(1)(2)
cp−2d2 +

p(p− 1)(p− 2)

(1)(2)(3)
cp−3d3 + . . .

so the expression a(x +∆x)p becomes axp + apxp−1∆x + . . . + a∆xp.
After subtracting axp and dividing by ∆x, the only term that doesn’t
contain a factor of ∆x is apxp−1, so when the limit as ∆x→ 0 is taken,
this is the only non-zero term.

S-3 (from TX-2f)

Applying the trigonometric identity for sinA − sinB, where A = kx +
k∆x+ δ and B = kx+ δ, we obtain:

sin(kx+ k∆x+ δ)− sin(kx+ δ) = 2 sin

(

k∆x

2

)

cos

(

kx+ δ +
k∆x

2

)

.

After dividing this express by ∆x and taking the limit as ∆x → 0, we
get:

dy(x)

dx
= lim
∆x→0

k









sin

(

k∆x

2

)

k
∆x

2









cos(kx+ δ +
k∆x

2
).
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S-4 (from TX-2e)

The symbols used to express the chain rule in Sect. 2e are already used
in other ways in this problem, so we make the substitutions f → F ,
x→ g, and then t→ x to get an equivalent chain rule:

dF (g(x))

dx
=

(

dF

dg

)(

dg

dx

)

.

Comparing the left side to the desired derivative, we make the corre-
spondence:

g(x) = ax2 + bx+ c, so: F (g) = g1/2 .

Then the chain rule gives:

dF

dx
=

(

1

2
g−1/2

)

(2ax+ b) =
2ax+ b

2(ax2 + bx+ c)1/2
.

S-5 (from PS-19c)

The slope of the function has a zero at x = 0 and another at x =
−(2B)/(3A). The signs of the second derivatives show the first to be a
maximum and the second a minimum. So just set (1/3) = −(2B)/(3A).
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MODEL EXAM

1. Verify that f(t) = A cosωt + B sinωt (where A and B are constant
and ω2 = k/m) is a solution of

m
d2f(t)

dt2
+ kf(t) = 0

where d2f(t)/dt2 is the second derivative of f(t) and k and m are
constants.

2. Evaluate the derivative of (A cos 5y) at y = π/20.

3. Evaluate this integral:
∫

x1/2 dx .

4. For each of the equations below, find the maximum and/or minimum
points and distinguish between them.

a. y(x) = x2 + x+ 10.

b. y(x) = x3 − 3x+ 2.

c. Determine A, B and C so the function y(x) = Ax3 +Bx2 + C will
have a minimum at x = 1/3.

Brief Answers:

1. (A verification).

2. See this module’s Problem Supplement, problem 17.

3. See this module’s Problem Supplement, problem 18.

4. See this module’s Problem Supplement, problem 19.
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